A rockfall or rock-fall is a quantity of rock that has fallen from a cliff face or from the roof or walls of mine or quarry workings.
A rockfall or rock-fall is a quantity of rock that has fallen from a cliff face or from the roof or walls of mine or quarry workings.
A landscape evolution model is a physically-based numerical model that simulates changing terrain over the course of time. The change in, or evolution of, terrain, can be due to: glacial or fluvial erosion, sediment transport and deposition, regolith production, the slow movement of material on hillslopes, more intermittent events such as rockfalls, debris flows, landslides, and other surface processes. These changes occur in response to the land surface being uplifted above sea-level (or other base-level) by surface uplift, and also respond to subsidence. A typical landscape evolution model takes many of these factors into account.
Landscape evolution models are used primarily in the field of geomorphology. As they improve, they are beginning to be consulted by land managers to aid in decision making, most recently in the area of degraded landscapes.
An active fault is a fault that is likely to become the source of another earthquake sometime in the future. Geologists commonly consider faults to be active if there has been movement observed or evidence of seismic activity during the last 10,000 years.
Active faulting is considered to be a geologic hazard – one related to earthquakes as a cause. Effects of movement on an active fault include strong ground motion, surface faulting, tectonic deformation, landslides and rockfalls, liquefaction, tsunamis, and seiches.
Mass wasting, also known as mass movement, is a general term for the movement of rock or soil down slopes under the force of gravity. It differs from other processes of erosion in that the debris transported by mass wasting is not entrained in a moving medium, such as water, wind, or ice. Types of mass wasting include creep, solifluction, rockfalls, debris flows, and landslides, each with its own characteristic features, and taking place over timescales from seconds to hundreds of years. Mass wasting occurs on both terrestrial and submarine slopes, and has been observed on Earth, Mars, Venus, Jupiter's moon Io, and on many other bodies in the Solar System.
Subsidence is sometimes regarded as a form of mass wasting. A distinction is then made between mass wasting by subsidence, which involves little horizontal movement, and mass wasting by slope movement.
Landslides, also known as landslips, rockslips or rockslides, are several forms of mass wasting that may include a wide range of ground movements, such as rockfalls, mudflows, shallow or deep-seated slope failures and debris flows. Landslides occur in a variety of environments, characterized by either steep or gentle slope gradients, from mountain ranges to coastal cliffs or even underwater, in which case they are called submarine landslides.
Gravity is the primary driving force for a landslide to occur, but there are other factors affecting slope stability that produce specific conditions that make a slope prone to failure. In many cases, the landslide is triggered by a specific event (such as heavy rainfall, an earthquake, a slope cut to build a road, and many others), although this is not always identifiable.
Mountain warfare or alpine warfare is warfare in mountains or similarly rough terrain. The term encompasses military operations affected by the terrain, hazards, and factors of combat and movement through rough terrain, as well as the strategies and tactics used by military forces in these situations and environments.
Mountain ranges are of strategic importance since they often act as a natural border and may also be the origin of a water source such as the Golan Heights. Attacking a prepared enemy position in mountain terrain generally requires a greater ratio of attacking soldiers to defending soldiers than a war conducted on level ground. Mountains present natural hazards such as lightning, strong gusts of wind, rockfalls, avalanches, snowpacks, ice, extreme cold, and glaciers with their crevasses; in these ways, it can be similar to cold-weather warfare. The generally uneven terrain and the slow pace of troop and material movements are additional threats to combatants. Movement, reinforcements, and medical evacuation up and down steep slopes and areas in which even pack animals cannot reach involves an enormous exertion of energy.
A megatsunami is an extremely large wave created by a substantial and sudden displacement of material into a body of water.
Megatsunamis have different features from ordinary tsunamis. Ordinary tsunamis are caused by underwater tectonic activity (movement of the earth's plates) and therefore occur along plate boundaries and as a result of earthquakes and the subsequent rise or fall in the sea floor that displaces a volume of water. Ordinary tsunamis exhibit shallow waves in the deep waters of the open ocean that increase dramatically in height upon approaching land to a maximum run-up height of around 30 metres (100 ft) in the cases of the most powerful earthquakes. By contrast, megatsunamis occur when a large amount of material suddenly falls into water or anywhere near water (such as via a landslide, meteor impact, or volcanic eruption). They can have extremely large initial wave heights in the hundreds of metres, far beyond the height of any ordinary tsunami. These giant wave heights occur because the water is "splashed" upwards and outwards by the displacement.
Scree is a collection of broken rock fragments at the base of a cliff or other steep rocky mass that has accumulated through periodic rockfall. Landforms associated with these materials are often called talus deposits.
The term scree is applied both to an unstable steep mountain slope composed of rock fragments and other debris, and to the mixture of rock fragments and debris itself. It is loosely synonymous with talus, material that accumulates at the base of a projecting mass of rock, or talus slope, a landform composed of talus. The term scree is sometimes used more broadly for any sheet of loose rock fragments mantling a slope, while talus is used more narrowly for material that accumulates at the base of a cliff or other rocky slope from which it has obviously eroded.