Rng (algebra) in the context of "Ring (mathematics)"

Play Trivia Questions online!

or

Skip to study material about Rng (algebra) in the context of "Ring (mathematics)"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Rng (algebra) in the context of Ring (mathematics)

In mathematics, a ring is an algebraic structure consisting of a set with two binary operations typically called addition and multiplication and denoted like addition and multiplication of integers. They work similarly to integer addition and multiplication, except that multiplication in a ring does not need to be commutative. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

More formally, a ring is a set that is endowed with two binary operations (addition and multiplication) such that the ring is an abelian group with respect to addition. The multiplication is associative, is distributive over the addition operation, and has a multiplicative identity element. Some authors apply the term ring to a further generalization, often called a rng, that omits the requirement for a multiplicative identity, and instead call the structure defined above a ring with identity.

↓ Explore More Topics
In this Dossier

Rng (algebra) in the context of Ring theory

In algebra, ring theory is the study of rings, algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings; their representations, or, in different language, modules; special classes of rings (group rings, division rings, universal enveloping algebras); related structures like rngs; as well as an array of properties that prove to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.

Commutative rings are much better understood than noncommutative ones. Algebraic geometry and algebraic number theory, which provide many natural examples of commutative rings, have driven much of the development of commutative ring theory, which is now, under the name of commutative algebra, a major area of modern mathematics. Because these three fields (algebraic geometry, algebraic number theory and commutative algebra) are so intimately connected it is usually difficult and meaningless to decide which field a particular result belongs to. For example, Hilbert's Nullstellensatz is a theorem which is fundamental for algebraic geometry, and is stated and proved in terms of commutative algebra. Similarly, Fermat's Last Theorem is stated in terms of elementary arithmetic, which is a part of commutative algebra, but its proof involves deep results of both algebraic number theory and algebraic geometry.

↑ Return to Menu

Rng (algebra) in the context of Unit (ring theory)

In algebra, a unit or invertible element of a ring is an invertible element for the multiplication of the ring. That is, an element u of a ring R is a unit if there exists v in R such thatwhere 1 is the multiplicative identity; the element v is unique for this property and is called the multiplicative inverse of u. The set of units of R forms a group R under multiplication, called the group of units or unit group of R. Other notations for the unit group are R, U(R), and E(R) (from the German term Einheit).

Less commonly, the term unit is sometimes used to refer to the element 1 of the ring, in expressions like ring with a unit or unit ring, and also unit matrix. Because of this ambiguity, 1 is more commonly called the "unity" or the "identity" of the ring, and the phrases "ring with unity" or a "ring with identity" may be used to emphasize that one is considering a ring instead of a rng.

↑ Return to Menu

Rng (algebra) in the context of Zero ring

In ring theory, a branch of mathematics, the zero ring or trivial ring is the unique ring (up to isomorphism) consisting of one element. (Less commonly, the term "zero ring" is used to refer to any rng of square zero, i.e., a rng in which xy = 0 for all x and y. This article refers to the one-element ring.)

In the category of rings, the zero ring is the terminal object, whereas the ring of integers Z is the initial object.

↑ Return to Menu