Rheological in the context of "Hemorheology"

Play Trivia Questions online!

or

Skip to study material about Rheological in the context of "Hemorheology"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Rheological in the context of Hemorheology

Hemorheology, also spelled haemorheology (haemo from Greek 'αἷμα, haima 'blood'; and rheology, from Greek ῥέω rhéō, 'flow' and -λoγία, -logia 'study of'), or blood rheology, is the study of flow properties of blood and its elements of plasma and cells. Proper tissue perfusion can occur only when blood's rheological properties are within certain levels. Alterations of these properties play significant roles in disease processes. Blood viscosity is determined by plasma viscosity, hematocrit (volume fraction of red blood cell, which constitute 99.9% of the cellular elements) and mechanical properties of red blood cells. Red blood cells have unique mechanical behavior, which can be discussed under the terms erythrocyte deformability and erythrocyte aggregation. Because of that, blood behaves as a non-Newtonian fluid. As such, the viscosity of blood varies with shear rate. Blood becomes less viscous at high shear rates like those experienced with increased flow such as during exercise or in peak-systole. Therefore, blood is a shear-thinning fluid. Contrarily, blood viscosity increases when shear rate goes down with increased vessel diameters or with low flow, such as downstream from an obstruction or in diastole. Blood viscosity also increases with increases in red cell aggregability.

↓ Explore More Topics
In this Dossier

Rheological in the context of Ball clay

Ball clays are kaolinitic sedimentary clays that commonly consist of 20–80% kaolinite, 10–25% mica and 6–65% quartz, along with small amounts of organic matter (such as lignite) and trace amounts of other minerals such as pyrite and siderite.

They are a common raw material for various types of ceramics, where their primary roles are to impart unfired strength, plasticity or to aid rheological stability during the shaping processes. Most ball clays impart colours ranging from buff to cream to off-white when fired in an oxidising atmosphere.

↑ Return to Menu