Resonance in the context of Nondimensionalization


Resonance in the context of Nondimensionalization

Resonance Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Resonance in the context of "Nondimensionalization"


⭐ Core Definition: Resonance

Resonance is a phenomenon that occurs when an object or system is subjected to an external force or vibration whose frequency matches a resonant frequency (or resonance frequency) of the system, defined as a frequency that generates a maximum amplitude response in the system. When this happens, the object or system absorbs energy from the external force and starts vibrating with a larger amplitude. Resonance can occur in various systems, such as mechanical, electrical, or acoustic systems, and it is often desirable in certain applications, such as musical instruments or radio receivers. However, resonance can also be detrimental, leading to excessive vibrations or even structural failure in some cases.

All systems, including molecular systems and particles, tend to vibrate at a natural frequency depending upon their structure; when there is very little damping this frequency is approximately equal to, but slightly above, the resonant frequency. When an oscillating force, an external vibration, is applied at a resonant frequency of a dynamic system, object, or particle, the outside vibration will cause the system to oscillate at a higher amplitude (with more force) than when the same force is applied at other, non-resonant frequencies.

↓ Menu
HINT:

In this Dossier

Resonance in the context of Whistling

Whistling, without the use of an artificial whistle, is achieved by creating a small opening with one's lips, usually after applying moisture (licking one's lips or placing water upon them) and then blowing or sucking air through the space. The air is moderated by the lips, curled tongue, teeth or fingers (placed over the mouth or in various areas between pursed lips) to create turbulence, and the curled tongue acts as a resonant chamber to enhance the resulting sound by acting as a type of Helmholtz resonator. By moving the various parts of the lips, fingers, tongue, and epiglottis, one can then manipulate the types of whistles produced.

View the full Wikipedia page for Whistling
↑ Return to Menu

Resonance in the context of Rayleigh scattering

Rayleigh scattering (/ˈrli/ RAY-lee) is the scattering or deflection of light, or other electromagnetic radiation, by particles with a size much smaller than the wavelength of the radiation. For light frequencies well below the resonance frequency of the scattering medium (normal dispersion regime), the amount of scattering is inversely proportional to the fourth power of the wavelength (e.g., a blue color is scattered much more than a red color as light propagates through air). The phenomenon is named after the 19th-century British physicist Lord Rayleigh (John William Strutt).

Rayleigh scattering results from the electric polarizability of the particles. The oscillating electric field of a light wave acts on the charges within a particle, causing them to move at the same frequency. The particle, therefore, becomes a small radiating dipole whose radiation we see as scattered light. The particles may be individual atoms or molecules; it can occur when light travels through transparent solids and liquids, but is most prominently seen in gases.

View the full Wikipedia page for Rayleigh scattering
↑ Return to Menu

Resonance in the context of Resonator

A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a resonator can be either electromagnetic or mechanical (including acoustic). Resonators are used to either generate waves of specific frequencies or to select specific frequencies from a signal. Musical instruments use acoustic resonators that produce sound waves of specific tones. Another example is quartz crystals used in electronic devices such as radio transmitters and quartz watches to produce oscillations of very precise frequency.

A cavity resonator is one in which waves exist in a hollow space inside the device. In electronics and radio, microwave cavities consisting of hollow metal boxes are used in microwave transmitters, receivers and test equipment to control frequency, in place of the tuned circuits which are used at lower frequencies. Acoustic cavity resonators, in which sound is produced by air vibrating in a cavity with one opening, are known as Helmholtz resonators.

View the full Wikipedia page for Resonator
↑ Return to Menu

Resonance in the context of Acoustic resonance

Acoustic resonance is a phenomenon in which an acoustic system amplifies sound waves whose frequency matches one of its own natural frequencies of vibration (its resonance frequencies).

The term "acoustic resonance" is sometimes used to narrow mechanical resonance to the frequency range of human hearing, but since acoustics is defined in general terms concerning vibrational waves in matter, acoustic resonance can occur at frequencies outside the range of human hearing.

View the full Wikipedia page for Acoustic resonance
↑ Return to Menu

Resonance in the context of Drumhead

A drumhead or drum skin is a membrane stretched over one or both of the open ends of a drum. The drumhead is struck with sticks, mallets, or hands, so that it vibrates and the sound resonates through the drum.

Additionally outside of percussion instruments, drumheads are also used on some string instruments, most notably the banjo.

View the full Wikipedia page for Drumhead
↑ Return to Menu

Resonance in the context of Overtone

An overtone is any resonant frequency above the fundamental frequency of a sound (or of any oscillation). An overtone may or may not be a harmonic. In other words, overtones are all pitches higher than the lowest pitch within an individual sound; the fundamental is the lowest pitch. While the fundamental is usually heard most prominently, overtones are actually present in any pitch except a true sine wave. The relative volume or amplitude of various overtone partials is one of the key identifying features of timbre, or the individual characteristic of a sound.

Using the model of Fourier analysis, the fundamental and the overtones together are called partials. Harmonics, or more precisely, harmonic partials, are partials whose frequencies are numerical integer multiples of the fundamental (including the fundamental, which is 1 times itself). These overlapping terms are variously used when discussing the acoustic behavior of musical instruments. (See etymology below.) The model of Fourier analysis provides for the inclusion of inharmonic partials, which are partials whose frequencies are not whole-number ratios of the fundamental (such as 1.1 or 2.14179).

View the full Wikipedia page for Overtone
↑ Return to Menu

Resonance in the context of Modal voice

Modal voice is the vocal register used most frequently in speech and singing in most languages. It is also the term used in linguistics for the most common phonation of vowels. The term "modal" refers to the resonant mode of vocal folds; that is, the optimal combination of airflow and glottal tension that yields maximum vibration.

In linguistics, modal voice is the only phonation found in the vowels and other sonorants (consonants such as m, n, l, and r) of most of the languages of the world, but a significant minority contrasts modal voice with other phonations. Among obstruents (consonants such as k, g, t͡ʃ/ch, d͡ʒ/j, s, and z), it is very common for languages to contrast modal voice with voicelessness, but in English, many supposedly-voiced obstruents do not usually have modal voice.

View the full Wikipedia page for Modal voice
↑ Return to Menu

Resonance in the context of Helmholtz resonance

Helmholtz resonance, also known as wind throb, refers to the phenomenon of air resonance in a cavity, an effect named after the German physicist Hermann von Helmholtz. This type of resonance occurs when air is forced in and out of a cavity (the resonance chamber), causing the air inside to vibrate at a specific natural frequency. The principle is widely observable in everyday life, notably when blowing across the top of a bottle, resulting in a resonant tone.

The concept of Helmholtz resonance is fundamental in various fields, including acoustics, engineering, and physics. The resonator itself, termed a Helmholtz resonator, consists of two key components: a cavity and a neck. The size and shape of these components are crucial in determining the resonant frequency, which is the frequency at which the system naturally oscillates.

View the full Wikipedia page for Helmholtz resonance
↑ Return to Menu

Resonance in the context of Bell metal

Bell metal or bell bronze is an alloy used for making bells and related instruments, such as cymbals. It is a form of bronze with a higher tin content than most other bronzes, usually in approximately a 4:1 ratio of copper to tin (typically, 78% copper, 22% tin by mass). The higher tin content increases the rigidity of the metal, and increases the resonance. Historically, it was preferred for early cannons. Today, it also has industrial uses, being specified for valve bodies, piston rings, bearings, and bushings.

View the full Wikipedia page for Bell metal
↑ Return to Menu

Resonance in the context of Balance wheel

A balance wheel, or balance, is the timekeeping device used in mechanical watches and small clocks, analogous to the pendulum in a pendulum clock. It is a weighted wheel that rotates back and forth, being returned toward its center position by a spiral torsion spring, known as the balance spring or hairspring. It is driven by the escapement, which transforms the rotating motion of the watch gear train into impulses delivered to the balance wheel. Each swing of the wheel (called a "tick" or "beat") allows the gear train to advance a set amount, moving the hands forward. The balance wheel and hairspring together form a harmonic oscillator, which due to resonance oscillates preferentially at a certain rate, its resonant frequency or "beat", and resists oscillating at other rates. The combination of the mass of the balance wheel and the elasticity of the spring keep the time between each oscillation or "tick" very constant, accounting for its nearly universal use as the timekeeper in mechanical watches to the present.

Primitive balance wheels appeared in the first mechanical clocks in the 14th century, but its accuracy is due to the addition of the balance spring by Robert Hooke and Christiaan Huygens around 1657. Until the 1980s virtually every portable timekeeping device used some form of balance wheel. Since the 1980s quartz timekeeping technology has taken over most of these applications, and the main remaining use for balance wheels is in mechanical watches.

View the full Wikipedia page for Balance wheel
↑ Return to Menu

Resonance in the context of Uranium-238

Uranium-238 (
U
or U-238) is the most common isotope of uranium found in nature, with a relative abundance above 99%. Unlike uranium-235, it is non-fissile, which means it cannot sustain a chain reaction in a thermal-neutron reactor. However, it is fissionable by fast neutrons, and is fertile, meaning it can be transmuted to fissile plutonium-239. U cannot support a chain reaction because inelastic scattering reduces neutron energy below the range where fast fission of one or more next-generation nuclei is probable. Doppler broadening of U's neutron absorption resonances, increasing absorption as fuel temperature increases, is also an essential negative feedback mechanism for reactor control.

The isotope has a half-life of 4.463 billion years (1.408×10 s). Due to its abundance and half-life relative rate of decay to other radioactive elements, U is responsible for about 40% of the radioactive heat produced within the Earth. The U decay chain contributes six electron anti-neutrinos per U nucleus (one per beta decay), resulting in a large detectable geoneutrino signal when decays occur within the Earth. The decay of U to daughter isotopes is extensively used in radiometric dating, particularly for material older than approximately 1 million years.

View the full Wikipedia page for Uranium-238
↑ Return to Menu

Resonance in the context of Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near resonance, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the isotope involved; in practical applications with static magnetic fields up to ca. 20 tesla, the frequency is similar to VHF and UHF television broadcasts (60–1000 MHz). NMR results from specific magnetic properties of certain atomic nuclei. High-resolution nuclear magnetic resonance spectroscopy is widely used to determine the structure of organic molecules in solution and study molecular physics and crystals as well as non-crystalline materials. NMR is also routinely used in advanced medical imaging techniques, such as in magnetic resonance imaging (MRI). The original application of NMR to condensed matter physics is nowadays mostly devoted to strongly correlated electron systems. It reveals large many-body couplings by fast broadband detection and should not be confused with solid state NMR, which aims at removing the effect of the same couplings by Magic Angle Spinning techniques.

The most commonly used nuclei are
H
and
C
, although isotopes of many other elements, such as
F
,
P
, and
Si
, can be studied by high-field NMR spectroscopy as well. In order to interact with the magnetic field in the spectrometer, the nucleus must have an intrinsic angular momentum and nuclear magnetic dipole moment. This occurs when an isotope has a nonzero nuclear spin, meaning an odd number of protons and/or neutrons (see Isotope). Nuclides with even numbers of both have a total spin of zero and are therefore not NMR-active.

View the full Wikipedia page for Nuclear magnetic resonance
↑ Return to Menu

Resonance in the context of Vortex shedding

In fluid dynamics, vortex shedding is an oscillating flow that takes place when a fluid such as air or water flows past a bluff (as opposed to streamlined) body at certain velocities, depending on the size and shape of the body. In this flow, vortices are created at the back of the body and detach periodically from either side of the body forming a Kármán vortex street. The fluid flow past the object creates alternating low-pressure vortices on the downstream side of the object. The object will tend to move toward the low-pressure zone.

If the bluff structure is not mounted rigidly and the frequency of vortex shedding matches the resonance frequency of the structure, then the structure can begin to resonate, vibrating with harmonic oscillations driven by the energy of the flow. This vibration is the cause for overhead power line wires humming in the wind, and for the fluttering of automobile whip radio antennas at some speeds. Tall chimneys constructed of thin-walled steel tubes can be sufficiently flexible that, in air flow with a speed in the critical range, vortex shedding can drive the chimney into violent oscillations that can damage or destroy the chimney.

View the full Wikipedia page for Vortex shedding
↑ Return to Menu

Resonance in the context of Normal mode

A normal mode of a dynamical system is a pattern of motion in which all parts of the system move sinusoidally with the same frequency and with a fixed phase relation. The free motion described by the normal modes takes place at fixed frequencies. These fixed frequencies of the normal modes of a system are known as its natural frequencies or resonant frequencies. A physical object, such as a building, bridge, or molecule, has a set of normal modes and their natural frequencies that depend on its structure, materials and boundary conditions.

The most general motion of a linear system is a superposition of its normal modes. The modes are "normal" in the sense that they move independently. An excitation of one mode will never cause excitation of a different mode. In mathematical terms, normal modes are orthogonal to each other.

View the full Wikipedia page for Normal mode
↑ Return to Menu

Resonance in the context of Fabry–Pérot interferometer

In optics, a Fabry–Pérot interferometer (FPI), or etalon, is an optical cavity made from two parallel reflecting surfaces (i.e.: thin mirrors). Optical waves can pass through the optical cavity only when they are in resonance with it. It is named after Charles Fabry and Alfred Perot, who developed the instrument in 1899. Etalon is from the French étalon, meaning "measuring gauge" or "standard".

Etalons are widely used in telecommunications, lasers and spectroscopy to control and measure the wavelengths of light. Recent advances in fabrication technique allow the creation of very precise tunable Fabry–Pérot interferometers. The device is technically an interferometer when the distance between the two surfaces (and with it the resonance length) can be changed, and an etalon when the distance is fixed (however, the two terms are often used interchangeably).

View the full Wikipedia page for Fabry–Pérot interferometer
↑ Return to Menu

Resonance in the context of Atom cluster

Nanoclusters are atomically precise, crystalline materials most often existing on the 0–2 nanometer scale. They are often considered kinetically stable intermediates that form during the synthesis of comparatively larger materials such as semiconductor and metallic nanocrystals. The majority of research conducted to study nanoclusters has focused on characterizing their crystal structures and understanding their role in the nucleation and growth mechanisms of larger materials.

Materials can be categorized into three different regimes, namely bulk, nanoparticles and nanoclusters. Bulk metals are electrical conductors and good optical reflectors and metal nanoparticles display intense colors due to surface plasmon resonance. However, when the size of metal nanoclusters is further reduced to form a nanocluster, the band structure becomes discontinuous and breaks down into discrete energy levels, somewhat similar to the energy levels of molecules. This gives nanoclusters similar qualities as a singular molecule and does not exhibit plasmonic behavior; nanoclusters are known as the bridging link between atoms and nanoparticles. Nanoclusters may also be referred to as molecular nanoparticles.

View the full Wikipedia page for Atom cluster
↑ Return to Menu

Resonance in the context of Asteroseismology

Asteroseismology is the study of oscillations in stars. Stars have many resonant modes and frequencies, and the path of sound waves passing through a star depends on the local speed of sound, which in turn depends on local temperature and chemical composition. Because the resulting oscillation modes are sensitive to different parts of the star, they inform astronomers about the internal structure of the star, which is otherwise not directly possible from overall properties like brightness and surface temperature.

Asteroseismology is closely related to helioseismology, the study of stellar pulsation specifically in the Sun. Though both are based on the same underlying physics, more and qualitatively different information is available for the Sun because its surface can be resolved.

View the full Wikipedia page for Asteroseismology
↑ Return to Menu

Resonance in the context of Magneto-optical trap

In atomic, molecular, and optical physics, a magneto-optical trap (MOT) is an apparatus which uses laser cooling and a spatially varying magnetic field to create a trap which can produce samples of cold neutral atoms. Temperatures achieved in a MOT can be as low as several microkelvins, depending on the atomic species, which is two or three times below the photon-recoil limit. However, for atoms with an unresolved hyperfine structure, such as Li, the temperature achieved in a MOT will be higher than the Doppler cooling limit.

A MOT is formed from the intersection of the zero of a weak quadrupolar magnetic field and six circularly polarized red-detuned optical molasses beams. Counterpropagating beams have opposite handed polarization. As atoms travel away from the zero field at the center of the trap, the spatially varying Zeeman shift brings an atomic transition into resonance with the laser beams. The polarization of the beam propagating in the opposite direction of this atomic motion is chosen to drive this transition. The absorption of these photons gives rise to a scattering force that pushes the atoms back towards the center of the trap.

View the full Wikipedia page for Magneto-optical trap
↑ Return to Menu