Regular graph in the context of Indegree


Regular graph in the context of Indegree

Regular graph Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Regular graph in the context of "Indegree"


⭐ Core Definition: Regular graph

In graph theory, a regular graph is a graph where each vertex has the same number of neighbors; i.e. every vertex has the same degree or valency. A regular directed graph must also satisfy the stronger condition that the indegree and outdegree of each internal vertex are equal to each other. A regular graph with vertices of degree k is called a k‑regular graph or regular graph of degree k.

↓ Menu
HINT:

In this Dossier

Regular graph in the context of Hypercube graph

In graph theory, the hypercube graph is the edge graph of the -dimensional hypercube, that is, it is the graph formed from the vertices and edges of the hypercube. For instance, the cube graph is the graph formed by the 8 vertices and 12 edges of a three-dimensional cube. has vertices, edges, and is a regular graph with edges touching each vertex.

The hypercube graph may also be constructed by creating a vertex for each subset of an -element set, with two vertices adjacent when their subsets differ in a single element, or by creating a vertex for each -digit binary number, with two vertices adjacent when their binary representations differ in a single digit. It is the -fold Cartesian product of the two-vertex complete graph, and may be decomposed into two copies of connected to each other by a perfect matching.

View the full Wikipedia page for Hypercube graph
↑ Return to Menu

Regular graph in the context of Degree sequence

In graph theory, the degree (or valency) of a vertex of a graph is the number of edges that are incident to the vertex; in a multigraph, a loop contributes 2 to a vertex's degree, for the two ends of the edge. The degree of a vertex is denoted or . The maximum degree of a graph is denoted by , and is the maximum of 's vertices' degrees. The minimum degree of a graph is denoted by , and is the minimum of 's vertices' degrees. In the multigraph shown on the right, the maximum degree is 5 and the minimum degree is 0.

In a regular graph, every vertex has the same degree, and so we can speak of the degree of the graph. A complete graph (denoted , where is the number of vertices in the graph) is a special kind of regular graph where all vertices have the maximum possible degree, .

View the full Wikipedia page for Degree sequence
↑ Return to Menu