Hypercube graph in the context of Regular graph


Hypercube graph in the context of Regular graph

Hypercube graph Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Hypercube graph in the context of "Regular graph"


⭐ Core Definition: Hypercube graph

In graph theory, the hypercube graph is the edge graph of the -dimensional hypercube, that is, it is the graph formed from the vertices and edges of the hypercube. For instance, the cube graph is the graph formed by the 8 vertices and 12 edges of a three-dimensional cube. has vertices, edges, and is a regular graph with edges touching each vertex.

The hypercube graph may also be constructed by creating a vertex for each subset of an -element set, with two vertices adjacent when their subsets differ in a single element, or by creating a vertex for each -digit binary number, with two vertices adjacent when their binary representations differ in a single digit. It is the -fold Cartesian product of the two-vertex complete graph, and may be decomposed into two copies of connected to each other by a perfect matching.

↓ Menu
HINT:

In this Dossier

Hypercube graph in the context of Path (graph theory)

In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices are distinct, so are the edges). A directed path (sometimes called dipath) in a directed graph is a finite or infinite sequence of edges which joins a sequence of distinct vertices, but with the added restriction that the edges be all directed in the same direction.

Paths are fundamental concepts of graph theory, described in the introductory sections of most graph theory texts. See e.g. Bondy & Murty (1976), Gibbons (1985), or Diestel (2005). Korte et al. (1990) cover more advanced algorithmic topics concerning paths in graphs.

View the full Wikipedia page for Path (graph theory)
↑ Return to Menu

Hypercube graph in the context of Skeleton (topology)

In mathematics, particularly in algebraic topology, the n-skeleton of a topological space X presented as a simplicial complex (resp. CW complex) refers to the subspace Xn that is the union of the simplices of X (resp. cells of X) of dimensions mn. In other words, given an inductive definition of a complex, the n-skeleton is obtained by stopping at the n-th step.

These subspaces increase with n. The 0-skeleton is a discrete space, and the 1-skeleton a topological graph. The skeletons of a space are used in obstruction theory, to construct spectral sequences by means of filtrations, and generally to make inductive arguments. They are particularly important when X has infinite dimension, in the sense that the Xn do not become constant as n → ∞.

View the full Wikipedia page for Skeleton (topology)
↑ Return to Menu