Refrigerant in the context of "Carbon tetrachloride"

Play Trivia Questions online!

or

Skip to study material about Refrigerant in the context of "Carbon tetrachloride"

Ad spacer

⭐ Core Definition: Refrigerant

Refrigerants are working fluids that carry heat from a cold environment to a warm environment while circulating between them. For example, the refrigerant in an air conditioner carries heat from a cool indoor environment to a hotter outdoor environment. Similarly, the refrigerant in a kitchen refrigerator carries heat from the inside the refrigerator out to the surrounding room. A wide range of fluids are used as refrigerants, with the specific choice depending on the temperature range needed and constraints related to the system involved.

Refrigerants are the basis of vapor compression refrigeration systems. The refrigerant is circulated in a loop between the cold and warm environments (see figure). In the low-temperature environment, the refrigerant absorbs heat at low pressure, causing it to evaporate. The gaseous refrigerant then enters a compressor, which raises its pressure and temperature. The pressurized refrigerant circulates through the warm environment, where it releases heat and condenses to liquid form. The high-pressure liquid is then depressurized and returned to the cold environment as a liquid-vapor mixture.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Refrigerant in the context of Carbon tetrachloride

Carbon tetrachloride, also known by many other names (such as carbon tet for short and tetrachloromethane, also recognised by the IUPAC), is a chemical compound with the chemical formula CCl4. It is a volatile, non-flammable, dense, colourless liquid with a chloroform-like sweet odour that can be detected at low levels. It was formerly widely used in fire extinguishers, as a precursor to refrigerants, an anthelmintic and a cleaning agent, but has since been phased out because of environmental and safety concerns. Exposure to high concentrations of carbon tetrachloride can affect the central nervous system and degenerate the liver and kidneys. Prolonged exposure can be fatal.

↓ Explore More Topics
In this Dossier

Refrigerant in the context of Liquified petroleum gas

Liquefied petroleum gas, also referred to as liquid petroleum gas (LPG or LP gas), is a fuel gas which contains a flammable mixture of hydrocarbon gases, specifically propane, n-butane and isobutane. It can also contain some propylene, butylene, and isobutylene/isobutene.

LPG is used as a fuel gas in heating appliances, cooking equipment, and vehicles, and is used as an aerosol propellant and a refrigerant, replacing chlorofluorocarbons in an effort to reduce the damage it causes to the ozone layer. When specifically used as a vehicle fuel, it is often referred to as autogas or just as gas.

↑ Return to Menu

Refrigerant in the context of Chloroform

Chloroform, or trichloromethane (often abbreviated as TCM), is an organochloride with the formula CHCl3 and a common solvent. It is a volatile, colorless, sweet-smelling, dense liquid produced on a large scale as a precursor to refrigerants and polytetrafluoroethylene (PTFE). Chloroform was once used as an inhalational anesthetic between the 19th century and the first half of the 20th century. It is miscible with many solvents but it is only very slightly soluble in water (only 8 g/L at 20°C).

↑ Return to Menu

Refrigerant in the context of Heat pump

A heat pump is a device that uses energy—generally mechanical energy, although the absorption heat pump instead uses thermal energy—to transfer heat from one space to another. The mechanical heat pump, also known as a Cullen engine, uses electric power to transfer heat by compression. Specifically, it transfers thermal energy by means of a heat pump and refrigeration cycle, cooling one space and warming the other. In winter, a heat pump can move heat from the cool outdoors to warm a house; in summer, it may also be designed to move heat from the house to the warmer outdoors. As it transfers rather than generates heat, it is more energy-efficient than heating by gas boiler.

In a typical vapour-compression heat pump, a gaseous refrigerant is compressed so its pressure and temperature rise. When the pump operates as a heater in cold weather, the warmed gas flows to a heat exchanger in the indoor space, where some of its thermal energy is transferred to that space, causing the gas to condense into a liquid. The liquified refrigerant flows to a heat exchanger in the outdoor space, where the pressure falls, the liquid evaporates, and the temperature of the gas falls. Now colder than the temperature of the outdoor space being used as a heat source, it can again take up energy from the heat source, be compressed, and repeat the cycle.

↑ Return to Menu

Refrigerant in the context of Methyl chloride

Chloromethane, also called methyl chloride, Refrigerant-40, R-40 or HCC 40, is an organic compound with the chemical formula CH3Cl. One of the haloalkanes, it is a colorless, sweet-smelling, flammable gas. Methyl chloride is a crucial reagent in industrial chemistry, although it is rarely present in consumer products, and was formerly utilized as a refrigerant. Most chloromethane is biogenic.

↑ Return to Menu

Refrigerant in the context of Dichlorodifluoromethane

Dichlorodifluoromethane (R-12) is a colorless gas popularly known by the genericized brand name Freon (as Freon-12). It is a chlorofluorocarbon halomethane (CFC) used as a refrigerant and aerosol spray propellant. In compliance with the Montreal Protocol, its manufacture was banned in developed countries (non-article 5 countries) in 1996, and in developing countries (Article 5 countries) in 2010 out of concerns about its damaging effect on the ozone layer. Its only allowed usage is as a fire retardant in submarines and aircraft. It is soluble in many organic solvents. R-12 cylinders are colored white.

R-12 has the highest potential for ozone destruction of all refrigeration gases.

↑ Return to Menu

Refrigerant in the context of Freon

Freon (/ˈfrɒn/ FREE-on) is a registered trademark of the Chemours Company and generic descriptor for a number of halocarbon products. They are stable, nonflammable, low toxicity gases or liquids which have generally been used as refrigerants and as aerosol propellants. They include chlorofluorocarbons (CFCs) and hydrofluorocarbons (HFCs), both of which cause ozone depletion (although the latter much less so) and contribute to global warming. "Freon" is the brand name for the refrigerants R-12, R-13B1, R-22, R-410A, R-502, and R-503 manufactured by the Chemours Company. They emit a strong smell similar to acetone. Freon has been found to cause damage to human health when inhaled in large amounts. Studies have been conducted in the pursuit to find beneficial reuses for gases under the Freon umbrella as an alternative to disposal.

↑ Return to Menu

Refrigerant in the context of Ozone depletion

Ozone depletion consists of two related events observed since the late 1970s: a lowered total amount of ozone in Earth's upper atmosphere, and a much larger springtime decrease in stratospheric ozone (the ozone layer) around Earth's polar regions. The latter phenomenon is referred to as the ozone hole. There are also springtime polar tropospheric ozone depletion events in addition to these stratospheric events.

The main causes of ozone depletion and the ozone hole are manufactured chemicals, especially manufactured halocarbon refrigerants, solvents, propellants, and foam-blowing agents (chlorofluorocarbons (CFCs), HCFCs, halons), referred to as ozone-depleting substances (ODS). These compounds are transported into the stratosphere by turbulent mixing after being emitted from the surface, mixing much faster than the molecules can settle. Once in the stratosphere, they release atoms from the halogen group through photodissociation, which catalyze the breakdown of ozone (O3) into oxygen (O2). Both types of ozone depletion were observed to increase as emissions of halocarbons increased.

↑ Return to Menu