Reference (computer science) in the context of Memory address


Reference (computer science) in the context of Memory address

Reference (computer science) Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Reference (computer science) in the context of "Memory address"


⭐ Core Definition: Reference (computer science)

In computer programming, a reference is a value that enables a program to indirectly access a particular datum, such as a variable's value or a record, in the computer's memory or in some other storage device. The reference is said to refer to the datum, and accessing the datum is called dereferencing the reference. A reference is distinct from the datum itself.

A reference is an abstract data type and may be implemented in many ways. Typically, a reference refers to data stored in memory on a given system, and its internal value is the memory address of the data, i.e. a reference is implemented as a pointer. For this reason a reference is often said to "point to" the data. Other implementations include an offset (difference) between the datum's address and some fixed "base" address, an index, or identifier used in a lookup operation into an array or table, an operating system handle, a physical address on a storage device, or a network address such as a URL.

↓ Menu
HINT:

👉 Reference (computer science) in the context of Memory address

In computing, a memory address is a reference to a specific memory location in memory used by both software and hardware. These addresses are fixed-length sequences of digits, typically displayed and handled as unsigned integers. This numerical representation is based on the features of CPU (such as the instruction pointer and incremental address registers). Programming language constructs often treat the memory like an array.

↓ Explore More Topics
In this Dossier

Reference (computer science) in the context of Variable (computer science)

In high-level programming, a variable is an abstract storage or indirection location paired with an associated symbolic name, which contains some known or unknown quantity of data or object referred to as a value; or in simpler terms, a variable is a named container for a particular set of bits or type of data (like integer, float, string, etc...) or undefined. A variable can eventually be associated with or identified by a memory address. The variable name is the usual way to reference the stored value, in addition to referring to the variable itself, depending on the context. This separation of name and content allows the name to be used independently of the exact information it represents. The identifier in computer source code can be bound to a value during run time, and the value of the variable may thus change during the course of program execution.

Variables in programming may not directly correspond to the concept of variables in mathematics. The latter is abstract, having no reference to a physical object such as storage location. The value of a computing variable is not necessarily part of an equation or formula as in mathematics. Furthermore, the variables can also be constants if the value is defined statically. Variables in computer programming are frequently given long names to make them relatively descriptive of their use, whereas variables in mathematics often have terse, one- or two-character names for brevity in transcription and manipulation.

View the full Wikipedia page for Variable (computer science)
↑ Return to Menu

Reference (computer science) in the context of Doubly linked list

In computer science, a doubly linked list is a linked data structure that consists of a set of sequentially linked records called nodes. Each node contains three fields: two link fields (references to the previous and to the next node in the sequence of nodes) and one data field. The beginning and ending nodes' previous and next links, respectively, point to some kind of terminator, typically a sentinel node or null, to facilitate traversal of the list. If there is only one sentinel node, then the list is circularly linked via the sentinel node. It can be conceptualized as two singly linked lists formed from the same data items, but in opposite sequential orders.

The two node links allow traversal of the list in either direction. While adding or removing a node in a doubly linked list requires changing more links than the same operations on a singly linked list, the operations are simpler and potentially more efficient (for nodes other than first nodes) because there is no need to keep track of the previous node during traversal or no need to traverse the list to find the previous node, so that its link can be modified.

View the full Wikipedia page for Doubly linked list
↑ Return to Menu

Reference (computer science) in the context of Name binding

In programming languages, name binding is the association of entities (data and/or code) with identifiers. An identifier bound to an object is said to reference that object. Machine languages have no built-in notion of identifiers, but name-object bindings as a service and notation for the programmer is implemented by programming languages. Binding is intimately connected with scoping, as scope determines which names bind to which objects – at which locations in the program code (lexically) and in which one of the possible execution paths (temporally).

Use of an identifier id in a context that establishes a binding for id is called a binding (or defining) occurrence. In all other occurrences (e.g., in expressions, assignments, and subprogram calls), an identifier stands for what it is bound to; such occurrences are called applied occurrences.

View the full Wikipedia page for Name binding
↑ Return to Menu

Reference (computer science) in the context of Transclusion

In computer science, transclusion is the inclusion of part or all of an electronic document into one or more other documents by reference via hypertext. Transclusion is usually performed when the referencing document is displayed, and is normally automatic and transparent to the end user. The result of transclusion is a single integrated document made of parts assembled dynamically from separate sources, possibly stored on different computers in disparate places.

Transclusion facilitates modular design (using the "single source of truth" model, whether in data, code, or content): a resource is stored once and distributed for reuse in multiple documents. Updates or corrections to a resource are then reflected in any referencing documents.

View the full Wikipedia page for Transclusion
↑ Return to Menu

Reference (computer science) in the context of ALGOL W

ALGOL W is a programming language. It is based on a proposal for ALGOL X by Niklaus Wirth and Tony Hoare as a successor to ALGOL 60. ALGOL W is a relatively simple upgrade of the original ALGOL 60, adding string, bitstring, complex number and reference to record data types and call-by-result passing of parameters, introducing the while statement, replacing switch with the case statement, and generally tightening up the language.

Wirth's entry was considered too little of an advance over ALGOL 60, and the more complex entry from Adriaan van Wijngaarden that would later become ALGOL 68 was selected in a highly contentious meeting. Wirth later published his version as A contribution to the development of ALGOL. With a number of small additions, this eventually became ALGOL W.

View the full Wikipedia page for ALGOL W
↑ Return to Menu

Reference (computer science) in the context of Graph (data structure)

In computer science, a graph is an abstract data type that is meant to implement the undirected graph and directed graph concepts from the field of graph theory within mathematics.

A graph data structure consists of a finite (and possibly mutable) set of vertices (also called nodes or points), together with a set of unordered pairs of these vertices for an undirected graph or a set of ordered pairs for a directed graph. These pairs are known as edges (also called links or lines), and for a directed graph are also known as edges but also sometimes arrows or arcs. The vertices may be part of the graph structure, or may be external entities represented by integer indices or references.

View the full Wikipedia page for Graph (data structure)
↑ Return to Menu