Receptor protein in the context of "Rhodopsin"

Play Trivia Questions online!

or

Skip to study material about Receptor protein in the context of "Rhodopsin"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Receptor protein in the context of Rhodopsin

Rhodopsin, also known as visual purple, is a protein encoded by the RHO gene and a G-protein-coupled receptor (GPCR). It is a light-sensitive receptor protein that triggers visual phototransduction in rod cells. Rhodopsin mediates dim light vision and thus is extremely sensitive to light. When rhodopsin is exposed to light, it immediately photobleaches. In humans, it is fully regenerated in about 30 minutes, after which the rods are more sensitive. Defects in the rhodopsin gene cause eye diseases such as retinitis pigmentosa and congenital stationary night blindness.

↓ Explore More Topics
In this Dossier

Receptor protein in the context of Archaerhodopsin

Archaerhodopsin proteins are a family of retinal-containing photoreceptors found in the archaea genera Halobacterium and Halorubrum. Like the homologous bacteriorhodopsin (bR) protein, archaerhodopsins harvest energy from sunlight to pump H ions out of the cell, establishing a proton motive force that is used for ATP synthesis. They have some structural similarities to the mammalian G protein-coupled receptor protein rhodopsin, but are not true homologs.

Archaerhodopsins differ from bR in that the claret membrane, in which they are expressed, includes bacterioruberin, a second chromophore thought to protect against photobleaching. Also, bR lacks the omega loop structure observed at the N-terminus of the structures of several archaerhodopsins.

↑ Return to Menu

Receptor protein in the context of Neurotransmitter receptor

A neurotransmitter receptor (also known as a neuroreceptor) is a membrane receptor protein that is activated by a neurotransmitter. Chemicals on the outside of the cell, such as a neurotransmitter, can bump into the cell's membrane, in which there are receptors. If a neurotransmitter bumps into its corresponding receptor, they will bind and can trigger other events to occur inside the cell. Therefore, a membrane receptor is part of the molecular machinery that allows cells to communicate with one another. A neurotransmitter receptor is a class of receptors that specifically binds with neurotransmitters as opposed to other molecules.

In postsynaptic cells, neurotransmitter receptors receive signals that trigger an electrical signal, by regulating the activity of ion channels. The influx of ions through ion channels opened due to the binding of neurotransmitters to specific receptors can change the membrane potential of a neuron. This can result in a signal that runs along the axon (see action potential) and is passed along at a synapse to another neuron and possibly on to a neural network. On presynaptic cells, there are receptors known as autoreceptors that are specific to the neurotransmitters released by that cell, which provide feedback and mediate excessive neurotransmitter release from it.

↑ Return to Menu