Raman spectroscopy in the context of Mercurous ion


Raman spectroscopy in the context of Mercurous ion

Raman spectroscopy Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Raman spectroscopy in the context of "Mercurous ion"


⭐ Core Definition: Raman spectroscopy

Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified.

Raman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering. A source of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Time-resolved spectroscopy and infrared spectroscopy typically yield similar yet complementary information.

↓ Menu
HINT:

👉 Raman spectroscopy in the context of Mercurous ion

Mercury polycations are polyatomic cations that contain only mercury atoms. The best known example is the Hg
2
ion, found in mercury(I) (mercurous) compounds. The existence of the metal–metal bond in Hg(I) compounds was established using X-ray studies in 1927 and Raman spectroscopy in 1934 making it one of the earliest, if not the first, metal–metal covalent bonds to be characterised.

Other mercury polycations are the linear Hg
3
and Hg
4
ions, and the triangular Hg
3
ion and a number of chain and layer polycations.

↓ Explore More Topics
In this Dossier

Raman spectroscopy in the context of Band-stop filter

In signal processing, a band-stop filter or band-rejection filter is a filter that passes most frequencies unaltered, but attenuates those in a specific range to very low levels. It is the inverse of a band-pass filter. A notch filter is a band-stop filter with a narrow stopband (high Q factor).

Narrow notch filters (optical) are used in Raman spectroscopy, live sound reproduction (public address systems, or PA systems) and in instrument amplifiers (especially amplifiers or preamplifiers for acoustic instruments such as acoustic guitar, mandolin, bass instrument amplifier, etc.) to reduce or prevent audio feedback, while having little noticeable effect on the rest of the frequency spectrum (electronic or software filters). Other names include "band limit filter", "T-notch filter", "band-elimination filter", and "band-reject filter".

View the full Wikipedia page for Band-stop filter
↑ Return to Menu

Raman spectroscopy in the context of Rotational spectroscopy

Rotational spectroscopy is concerned with the measurement of the energies of transitions between quantized rotational states of molecules in the gas phase. The rotational spectrum (power spectral density vs. rotational frequency) of polar molecules can be measured in absorption or emission by microwave spectroscopy or by far infrared spectroscopy. The rotational spectra of non-polar molecules cannot be observed by those methods, but can be observed and measured by Raman spectroscopy. Rotational spectroscopy is sometimes referred to as pure rotational spectroscopy to distinguish it from rotational-vibrational spectroscopy where changes in rotational energy occur together with changes in vibrational energy, and also from ro-vibronic spectroscopy (or just vibronic spectroscopy) where rotational, vibrational and electronic energy changes occur simultaneously.

For rotational spectroscopy, molecules are classified according to symmetry into spherical tops, linear molecules, and symmetric tops; analytical expressions can be derived for the rotational energy terms of these molecules. Analytical expressions can be derived for the fourth category, asymmetric top, for rotational levels up to J=3, but higher energy levels need to be determined using numerical methods. The rotational energies are derived theoretically by considering the molecules to be rigid rotors and then applying extra terms to account for centrifugal distortion, fine structure, hyperfine structure and Coriolis coupling. Fitting the spectra to the theoretical expressions gives numerical values of the angular moments of inertia from which very precise values of molecular bond lengths and angles can be derived in favorable cases. In the presence of an electrostatic field there is Stark splitting which allows molecular electric dipole moments to be determined.

View the full Wikipedia page for Rotational spectroscopy
↑ Return to Menu

Raman spectroscopy in the context of Rotational–vibrational spectroscopy

Rotational–vibrational spectroscopy is a branch of molecular spectroscopy that is concerned with infrared and Raman spectra of molecules in the gas phase. Transitions involving changes in both vibrational and rotational states can be abbreviated as rovibrational (or ro-vibrational) transitions. When such transitions emit or absorb photons (electromagnetic radiation), the frequency is proportional to the difference in energy levels and can be detected by certain kinds of spectroscopy. Since changes in rotational energy levels are typically much smaller than changes in vibrational energy levels, changes in rotational state are said to give fine structure to the vibrational spectrum. For a given vibrational transition, the same theoretical treatment as for pure rotational spectroscopy gives the rotational quantum numbers, energy levels, and selection rules. In linear and spherical top molecules, rotational lines are found as simple progressions at both higher and lower frequencies relative to the pure vibration frequency. In symmetric top molecules the transitions are classified as parallel when the dipole moment change is parallel to the principal axis of rotation, and perpendicular when the change is perpendicular to that axis. The ro-vibrational spectrum of the asymmetric rotor water is important because of the presence of water vapor in the atmosphere.

View the full Wikipedia page for Rotational–vibrational spectroscopy
↑ Return to Menu

Raman spectroscopy in the context of Photomultiplier tube

Photomultiplier tubes (photomultipliers or PMTs for short) are extremely sensitive detectors of light in the ultraviolet, visible, and near-infrared ranges of the electromagnetic spectrum. They are members of the class of vacuum tubes, more specifically vacuum phototubes. These detectors multiply the current produced by incident light by as much as 100 million times or 10 (i.e., 160 dB), in multiple dynode stages, enabling (for example) individual photons to be detected when the incident flux of light is low.

The combination of high gain, low noise, high frequency response or, equivalently, ultra-fast response, and large area of collection has maintained photomultipliers an essential place in low light level spectroscopy, confocal microscopy, Raman spectroscopy, fluorescence spectroscopy, nuclear and particle physics, astronomy, medical diagnostics including blood tests, medical imaging, motion picture film scanning (telecine), radar jamming, and high-end image scanners known as drum scanners. Elements of photomultiplier technology, when integrated differently, are the basis of night vision devices. Research that analyzes light scattering, such as the study of polymers in solution, often uses a laser and a PMT to collect the scattered light data.

View the full Wikipedia page for Photomultiplier tube
↑ Return to Menu

Raman spectroscopy in the context of End group

End groups are an important aspect of polymer synthesis and characterization. In polymer chemistry, they are functional groups that are at the very ends of a macromolecule or oligomer (IUPAC). In polymer synthesis, like condensation polymerization and free-radical types of polymerization, end-groups are commonly used and can be analyzed by nuclear magnetic resonance (NMR) to determine the average length of the polymer. Other methods for characterization of polymers where end-groups are used are mass spectrometry and vibrational spectrometry, like infrared and raman spectroscopy. These groups are important for the analysis of polymers and for grafting to and from a polymer chain to create a new copolymer. One example of an end group is in the polymer poly(ethylene glycol) diacrylate where the end-groups are circled.

View the full Wikipedia page for End group
↑ Return to Menu

Raman spectroscopy in the context of Ferroelasticity

Ferroelasticity is a phenomenon in which a material may exhibit a spontaneous strain, and is the mechanical equivalent of ferroelectricity and ferromagnetism in the field of ferroics. A ferroelastic crystal has two or more stable orientational states in the absence of mechanical stress or electric field, i.e. remanent states, and can be reproducibly switched between the states by applying a stress or an electric field greater than some critical value. The application of opposite fields leads to hysteresis as the system crosses back and forth across an energy barrier. This transition dissipates an energy equal to the area enclosed by the hysteresis loop.

The transition of the crystal's parent structure to one of its stable ferroelastic strains is typically accompanied by a reduction in the crystal symmetry. The spontaneous change in strain and crystal structure can be associated with a spontaneous change in other observable properties, such as birefringence, optical absorption, and polarizability. In compatible materials, Raman spectroscopy has been used to directly image ferroelastic switching in crystals.

View the full Wikipedia page for Ferroelasticity
↑ Return to Menu

Raman spectroscopy in the context of Fluid inclusions

A fluid inclusion is a bubble of liquid and/or gas that is trapped within a crystal. As minerals often form from a liquid or aqueous medium, tiny bubbles of that liquid can become trapped within the crystal, or along healed crystal fractures. These inclusions usually range in size from 0.01 mm to 1 mm and are only visible in detail by microscopic study, however specimens of fenster or skeletal quartz may include thin sheet-like inclusions that are many millimetres in length and breadth within their lamellar voids.

These inclusions occur in a wide variety of environments. For example, they are found within cementing minerals of sedimentary rocks, in gangue minerals such as quartz or calcite in hydrothermal circulation deposits, in fossil amber, and in deep ice cores from the Greenland and Antarctic ice caps. The inclusions can provide information about the conditions existing during the formation of the enclosing mineral. Fourier transform infrared spectroscopy and Raman spectroscopy can be used to determine the composition of fluid inclusions.

View the full Wikipedia page for Fluid inclusions
↑ Return to Menu