Radium in the context of Radioactive


Radium in the context of Radioactive

Radium Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Radium in the context of "Radioactive"


⭐ Core Definition: Radium

Radium is a chemical element; it has symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rather than oxygen) upon exposure to air, forming a black surface layer of radium nitride (Ra3N2). All isotopes of radium are radioactive, the most stable isotope being radium-226 with a half-life of 1,600 years. When radium decays, it emits ionizing radiation as a by-product, which can excite fluorescent chemicals and cause radioluminescence. For this property, it was widely used in self-luminous paints following its discovery. Of the radioactive elements that occur in quantity, radium is considered particularly toxic, and it is carcinogenic due to the radioactivity of both it and its immediate decay product radon as well as its tendency to accumulate in the bones.

Radium, in the form of radium chloride, was discovered by Marie and Pierre Curie in 1898 from ore mined at Jáchymov. They extracted the radium compound from uraninite and published the discovery at the French Academy of Sciences five days later. Radium was isolated in its metallic state by Marie Curie and André-Louis Debierne through the electrolysis of radium chloride in 1910, and soon afterwards the metal started being produced on larger scales in Austria, the United States, and Belgium. However, the amount of radium produced globally has always been small in comparison to other elements, and by the 2010s, annual production of radium, mainly via extraction from spent nuclear fuel, was less than 100 grams.

↓ Menu
HINT:

In this Dossier

Radium in the context of Gamma ray

A gamma ray, also known as gamma radiation (symbol γ), is a penetrating form of electromagnetic radiation arising from high-energy interactions like the radioactive decay of atomic nuclei or astronomical events like solar flares. It consists of the shortest wavelength electromagnetic waves, typically shorter than those of X-rays. With frequencies above 30 exahertz (3×10 Hz) and wavelengths less than 10 picometers (1×10 m), gamma ray photons have the highest photon energy of any form of electromagnetic radiation. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation gamma rays based on their relatively strong penetration of matter; in 1900, he had already named two less penetrating types of decay radiation (discovered by Henri Becquerel) alpha rays and beta rays in ascending order of penetrating power.

Gamma rays from radioactive decay are in the energy range from a few kiloelectronvolts (keV) to approximately 8 megaelectronvolts (MeV), corresponding to the typical energy levels in nuclei with reasonably long lifetimes. The energy spectrum of gamma rays can be used to identify the decaying radionuclides using gamma spectroscopy. Very-high-energy gamma rays in the 100–1000 teraelectronvolt (TeV) range have been observed from astronomical sources such as the Cygnus X-3 microquasar.

View the full Wikipedia page for Gamma ray
↑ Return to Menu

Radium in the context of Alkaline earth metal

The alkaline earth metals are six chemical elements in group 2 of the periodic table. They are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra). The elements have very similar properties: they are all shiny, silvery-white, somewhat reactive metals at standard temperature and pressure.

Together with helium, these elements have in common an outer s orbital which is full—that is, this orbital contains its full complement of two electrons, which the alkaline earth metals readily lose to form cations with charge +2, and an oxidation state of +2. Helium is grouped with the noble gases and not with the alkaline earth metals, but it is theorized to have some similarities to beryllium when forced into bonding and has sometimes been suggested to belong to group 2.

View the full Wikipedia page for Alkaline earth metal
↑ Return to Menu

Radium in the context of Half-life

Half-life (symbol t½) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable atoms survive. The term is also used more generally to characterize any type of exponential (or, rarely, non-exponential) decay. For example, the medical sciences refer to the biological half-life of drugs and other chemicals in the human body. The converse of half-life is doubling time, an exponential property which increases by a factor of 2 rather than reducing by that factor.

The original term, half-life period, dating to Ernest Rutherford's discovery of the principle in 1907, was shortened to half-life in the early 1950s. Rutherford applied the principle of a radioactive element's half-life in studies of age determination of rocks by measuring the decay period of radium to lead-206.

View the full Wikipedia page for Half-life
↑ Return to Menu

Radium in the context of Balneotherapy

Balneotherapy (Latin: balneum "bath") is a method of treating diseases by bathing, a traditional medicine technique usually practiced at spas. Since ancient times, humans have used hot springs, public baths and thermal medicine for therapeutic effects. While it is considered distinct from hydrotherapy, there are some overlaps in practice and in underlying principles. Balneotherapy may involve hot or cold water, massage through moving water, relaxation, or stimulation. Many mineral waters at spas are rich in particular minerals such as silica, sulfur, selenium, and radium. Medicinal clays are also widely used, a practice known as 'fangotherapy'.

View the full Wikipedia page for Balneotherapy
↑ Return to Menu

Radium in the context of Scheelite

Scheelite is a calcium tungstate mineral with the chemical formula CaWO4. It is an important ore of tungsten (wolfram). Scheelite is originally named after Swedish chemist Carl Wilhelm Scheele (1742–1786). Well-formed crystals are sought by collectors and are occasionally fashioned into gemstones when suitably free of flaws. Scheelite has been synthesized using the Czochralski process; the material produced may be used to imitate diamond, as a scintillator, or as a solid-state lasing medium. It was also used in radium paint in the same fashion as was zinc sulphide, and Thomas Edison invented a fluoroscope with a calcium tungstate-coated screen, making the images six times brighter than those with barium platinocyanide; the latter chemical allowed Röntgen to discover X-rays in early November 1895. The semi-precious stone marketed as 'blue scheelite' is actually a rock type consisting mostly of calcite and dolomite, with occasional traces of yellow-orange scheelite.

View the full Wikipedia page for Scheelite
↑ Return to Menu

Radium in the context of Radon

Radon is a chemical element; it has symbol Rn and atomic number 86. It is a radioactive noble gas and is colorless and odorless. Of the three naturally occurring radon isotopes, only Rn has a sufficiently long half-life (3.825 days) for it to be released from the soil and rock where it is generated. Radon isotopes are the immediate decay products of radium isotopes.

The instability of Rn, its most stable isotope, makes radon one of the rarest elements. Radon will be present on Earth for several billion more years despite its short half-life, because it is constantly being produced as a step in the decay chains of U and Th, both of which are abundant radioactive nuclides with half-lives of at least several billion years. The decay of radon produces many other short-lived nuclides, known as "radon daughters", ending at stable isotopes of lead. Rn occurs in significant quantities as a step in the normal radioactive decay chain of U, also known as the uranium series, which slowly decays into a variety of radioactive nuclides and eventually decays into stable Pb. Rn occurs in minute quantities as an intermediate step in the decay chain of Th, also known as the thorium series, which eventually decays into stable Pb.

View the full Wikipedia page for Radon
↑ Return to Menu

Radium in the context of Paul Villard

Paul Ulrich Villard (28 September 1860 – 13 January 1934) was a French chemist and physicist. He discovered gamma rays in 1900 while studying the radiation emanating from radium.

View the full Wikipedia page for Paul Villard
↑ Return to Menu

Radium in the context of Nuclear chemistry

Nuclear chemistry is the sub-field of chemistry dealing with radioactivity, nuclear processes, and transformations in the nuclei of atoms, such as nuclear transmutation and nuclear properties.

It is the chemistry of radioactive elements such as the actinides, radium and radon together with the chemistry associated with equipment (such as nuclear reactors) which are designed to perform nuclear processes. This includes the corrosion of surfaces and the behavior under conditions of both normal and abnormal operation (such as during an accident). An important area is the behavior of objects and materials after being placed into a nuclear waste storage or disposal site.

View the full Wikipedia page for Nuclear chemistry
↑ Return to Menu

Radium in the context of Hydride

In chemistry, a hydride is formally the anion of hydrogen (H), a hydrogen ion with two electrons. In modern usage, this is typically only used for ionic bonds, but it is sometimes (and has been more frequently in the past) applied to all compounds containing covalently bound H atoms. In this broad and potentially archaic sense, water (H2O) is a hydride of oxygen, ammonia is a hydride of nitrogen, etc. In covalent compounds, it implies hydrogen is attached to a less electronegative element. In such cases, the H centre has nucleophilic character, which contrasts with the protic character of acids. The hydride anion is very rarely observed.

Almost all of the elements up to Cf form binary compounds with hydrogen, the exceptions being He, Ne, Ar, Kr, Pm, Rn, Fr, and Ra. Exotic molecules such as positronium hydride have also been made.

View the full Wikipedia page for Hydride
↑ Return to Menu

Radium in the context of Francium

Francium is a chemical element; it has symbol Fr and atomic number 87. It is extremely radioactive; its most stable isotope, francium-223 (originally called actinium K after the natural decay chain in which it appears), has a half-life of only 22 minutes. It is the second-most electropositive element, behind only caesium, and is the second rarest naturally occurring element (after astatine). Francium's isotopes decay quickly into astatine, radium, and radon. The electronic structure of a francium atom is [Rn] 7s; thus, the element is classed as an alkali metal.

As a consequence of its extreme instability, bulk francium has never been seen. Because of the general appearance of the other elements in its periodic table column, it is presumed that francium would appear as a highly reactive metal if enough could be collected together to be viewed as a bulk solid or liquid. Obtaining such a sample is highly improbable since the extreme heat of decay resulting from its short half-life would immediately vaporize any viewable quantity of the element.

View the full Wikipedia page for Francium
↑ Return to Menu

Radium in the context of Nuclear propulsion

Nuclear propulsion includes a wide variety of propulsion methods that use some form of nuclear reaction as their primary power source. Many aircraft carriers and submarines currently use uranium fueled nuclear reactors that can provide propulsion for long periods without refueling. There are also applications in the space sector with nuclear thermal and nuclear electric engines which could be more efficient than conventional rocket engines.

The idea of using nuclear material for propulsion dates back to the beginning of the 20th century. In 1903 it was hypothesized that radioactive material, radium, might be a suitable fuel for engines to propel cars, planes, and boats. H. G. Wells picked up this idea in his 1914 fiction work The World Set Free.

View the full Wikipedia page for Nuclear propulsion
↑ Return to Menu

Radium in the context of Katanga (region)

Katanga was one of the four large provinces created in the Belgian Congo in 1914.It was one of the eleven provinces of the Democratic Republic of the Congo between 1966 and 2015, when it was split into the Tanganyika, Haut-Lomami, Lualaba, and Haut-Katanga provinces. Between 1971 and 1997 (during the rule of Mobutu Sese Seko when Congo was known as Zaire), its official name was Shaba Province.

Katanga's area encompassed 497,000 square kilometres (192,000 sq mi). Farming and ranching are carried out on the Katanga Plateau. The eastern part of the province is a rich mining region which supplies cobalt, copper, tin, radium, uranium, and diamonds. The region's former capital, Lubumbashi, is the second-largest city in the Congo.

View the full Wikipedia page for Katanga (region)
↑ Return to Menu

Radium in the context of Radium nitride

Radium nitride is an inorganic compound of radium and nitrogen with the chemical formula Ra3N2.

View the full Wikipedia page for Radium nitride
↑ Return to Menu

Radium in the context of Radium-226

Radium-226 (
Ra
) is the longest-lived isotope of radium, with a half-life of 1600 years. It is an intermediate product in the decay chain of uranium-238; as such, it can be found naturally in uranium-containing minerals.

View the full Wikipedia page for Radium-226
↑ Return to Menu