Radioactive isotopes in the context of "Isotopes of sulfur"

Play Trivia Questions online!

or

Skip to study material about Radioactive isotopes in the context of "Isotopes of sulfur"




⭐ Core Definition: Radioactive isotopes

A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that is unstable and known to undergo radioactive decay into a different nuclide, which may be another radionuclide (see decay chain) or be stable. Radiation emitted by radionuclides is almost always ionizing radiation because it is energetic enough to liberate an electron from another atom.

Radioactive decay is a random process at the level of single atoms: it is impossible to predict when one particular atom will decay. However, for a collection of atoms of a single nuclide, the decay rate (considered as a statistical average), and thus the half-life (t1/2) for that nuclide, can be calculated from the measurement of the decay. The range of the half-lives of radioactive atoms has no known limits and spans a time range of over 55 orders of magnitude.

↓ Menu

👉 Radioactive isotopes in the context of Isotopes of sulfur

Sulfur (16S) has 23 known isotopes with mass numbers ranging from 27 to 49, four of which are stable: S (94.85%), S (0.76%), S (4.37%), and S (0.016%). The preponderance of sulfur-32 is explained by its production from carbon-12 plus successive fusion capture of five helium-4 nuclei in the alpha process of nucleosynthesis.

The main radioisotope S is formed from cosmic ray spallation of Ar in the atmosphere. Other radioactive isotopes of sulfur are all comparatively short-lived. The next longest-lived radioisotope is sulfur-38, with a half-life of 170 minutes. Isotopes lighter than S mostly decay to isotopes of phosphorus or silicon, while S and heavier radioisotopes decay to isotopes of chlorine.

↓ Explore More Topics
In this Dossier

Radioactive isotopes in the context of Geochronology

Geochronology is the science of determining the age of rocks, fossils, and sediments using signatures inherent in the rocks themselves. Absolute geochronology can be accomplished through radioactive isotopes, whereas relative geochronology is provided by tools such as paleomagnetism and stable isotope ratios. By combining multiple geochronological (and biostratigraphic) indicators the precision of the recovered age can be improved.

Geochronology is different in application from biostratigraphy, which is the science of assigning sedimentary rocks to a known geological period via describing, cataloging and comparing fossil floral and faunal assemblages. Biostratigraphy does not directly provide an absolute age determination of a rock, but merely places it within an interval of time at which that fossil assemblage is known to have coexisted. Both disciplines work together hand in hand, however, to the point where they share the same system of naming strata (rock layers) and the time spans utilized to classify sublayers within a stratum.

↑ Return to Menu

Radioactive isotopes in the context of Environmental isotopes

The environmental isotopes are a subset of isotopes, both stable and radioactive, which are the object of isotope geochemistry. They are primarily used as tracers to see how things move around within the ocean-atmosphere system, within terrestrial biomes, within the Earth's surface, and between these broad domains.

↑ Return to Menu