Radio beacon in the context of Radio frequency


Radio beacon in the context of Radio frequency

Radio beacon Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Radio beacon in the context of "Radio frequency"


⭐ Core Definition: Radio beacon

In navigation, a radio beacon or radiobeacon is a kind of beacon, a device that marks a fixed location and allows direction-finding equipment to find relative bearing. It is a fixed-position radio transmitter which radiates radio waves which are received by navigation instruments on ships, aircraft or vehicles.

The beacon transmits a continuous or periodic radio signal on a specified radio frequency containing limited information (for example, its identification or location). Occasionally, the beacon's transmission includes other information, such as telemetric or meteorological data.

↓ Menu
HINT:

In this Dossier

Radio beacon in the context of Radio

Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves. They can be received by other antennas connected to a radio receiver; this is the fundamental principle of radio communication. In addition to communication, radio is used for radar, radio navigation, remote control, remote sensing, and other applications.

In radio communication, used in radio and television broadcasting, cell phones, two-way radios, wireless networking, and satellite communication, among numerous other uses, radio waves are used to carry information across space from a transmitter to a receiver, by modulating the radio signal (impressing an information signal on the radio wave by varying some aspect of the wave) in the transmitter. In radar, used to locate and track objects like aircraft, ships, spacecraft and missiles, a beam of radio waves emitted by a radar transmitter reflects off the target object, and the reflected waves reveal the object's location to a receiver that is typically colocated with the transmitter. In radio navigation systems such as GPS and VOR, a mobile navigation instrument receives radio signals from multiple navigational radio beacons whose position is known, and by precisely measuring the arrival time of the radio waves the receiver can calculate its position on Earth. In wireless radio remote control devices like drones, garage door openers, and keyless entry systems, radio signals transmitted from a controller device control the actions of a remote device.

View the full Wikipedia page for Radio
↑ Return to Menu

Radio beacon in the context of Non-directional beacon

NDB signals follow the curvature of the Earth, so they can be received at much greater distances at lower altitudes, a major advantage over VOR. However, NDB signals are also affected more by atmospheric conditions, mountainous terrain, coastal refraction and electrical storms, particularly at long range. The system, developed by United States Army Air Corps (USAAC) Captain Albert Francis Hegenberger, was used to fly the world's first instrument approach on May 9, 1932.

View the full Wikipedia page for Non-directional beacon
↑ Return to Menu

Radio beacon in the context of Beacon

A beacon is an intentionally conspicuous device designed to attract attention to a specific location. A common example is the lighthouse, which draws attention to a fixed point that can be used to navigate around obstacles or into port. More modern examples include a variety of radio beacons that can be read on radio direction finders in all weather, and radar transponders that appear on radar displays.

Beacons can also be combined with semaphoric or other indicators to provide important information, such as the status of an airport, by the colour and rotational pattern of its airport beacon, or of pending weather as indicated on a weather beacon mounted at the top of a tall building or similar site. When used in such fashion, beacons can be considered a form of optical telegraphy.

View the full Wikipedia page for Beacon
↑ Return to Menu

Radio beacon in the context of OMEGA Navigation System

OMEGA was the first global-range radio navigation system, operated by the United States in cooperation with six partner nations. It was a hyperbolic navigation system, enabling ships and aircraft to determine their position by receiving very low frequency (VLF) radio signals in the range 10 to 14 kHz, transmitted by a global network of eight fixed terrestrial radio beacons, using a navigation receiver unit. It became operational around 1971 and was shut down in 1997 in favour of the Global Positioning System.

View the full Wikipedia page for OMEGA Navigation System
↑ Return to Menu

Radio beacon in the context of Medium frequency

Medium frequency (MF) is the ITU designation for radio frequencies (RF) in the range of 300 kilohertz (kHz) to 3 megahertz (MHz). Part of this band is the medium wave (MW) AM broadcast band. The MF band is also known as the hectometer band as the wavelengths range from ten to one hectometers (1000 to 100 m). Frequencies immediately below MF are denoted as low frequency (LF), while the first band of higher frequencies is known as high frequency (HF). MF is mostly used for AM radio broadcasting, navigational radio beacons, maritime ship-to-shore communication, and transoceanic air traffic control.

View the full Wikipedia page for Medium frequency
↑ Return to Menu