Modulation in the context of "Radio"

⭐ In the context of radio, modulation is considered a crucial step because it enables radio waves to…

Ad spacer

⭐ Core Definition: Modulation

Signal modulation is the process of varying one or more properties of a periodic waveform in electronics and telecommunication for the purpose of transmitting information.

The process encodes information in form of the modulation or message signal onto a carrier signal to be transmitted. For example, the message signal might be an audio signal representing sound from a microphone, a video signal representing moving images from a video camera, or a digital signal representing a sequence of binary digits, a bitstream from a computer.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

πŸ‘‰ Modulation in the context of Radio

Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3Β hertz (Hz) and 300Β gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves. They can be received by other antennas connected to a radio receiver; this is the fundamental principle of radio communication. In addition to communication, radio is used for radar, radio navigation, remote control, remote sensing, and other applications.

In radio communication, used in radio and television broadcasting, cell phones, two-way radios, wireless networking, and satellite communication, among numerous other uses, radio waves are used to carry information across space from a transmitter to a receiver, by modulating the radio signal (impressing an information signal on the radio wave by varying some aspect of the wave) in the transmitter. In radar, used to locate and track objects like aircraft, ships, spacecraft and missiles, a beam of radio waves emitted by a radar transmitter reflects off the target object, and the reflected waves reveal the object's location to a receiver that is typically colocated with the transmitter. In radio navigation systems such as GPS and VOR, a mobile navigation instrument receives radio signals from multiple navigational radio beacons whose position is known, and by precisely measuring the arrival time of the radio waves the receiver can calculate its position on Earth. In wireless radio remote control devices like drones, garage door openers, and keyless entry systems, radio signals transmitted from a controller device control the actions of a remote device.

↓ Explore More Topics
In this Dossier

Modulation in the context of Alternating current

Alternating current (AC) is an electric current that periodically reverses direction and changes its magnitude continuously with time, in contrast to direct current (DC), which flows only in one direction. Alternating current is the form in which electric power is delivered to businesses and residences, and it is the form of electrical energy that consumers typically use when they plug kitchen appliances, televisions, fans and electric lamps into a wall socket. The abbreviations AC and DC are often used to mean simply alternating and direct, respectively, as when they modify current or voltage.

The usual waveform of alternating current in most electric power circuits is a sine wave, whose positive half-period corresponds with positive direction of the current and vice versa (the full period is called a cycle). "Alternating current" most commonly refers to power distribution, but a wide range of other applications are technically alternating current although it is less common to describe them by that term. In many applications, like guitar amplifiers, different waveforms are used, such as triangular waves or square waves. Audio and radio signals carried on electrical wires are also examples of alternating current. These types of alternating current carry information such as sound (audio) or images (video) sometimes carried by modulation of an AC carrier signal. These currents typically alternate at higher frequencies than those used in power transmission.

↑ Return to Menu

Modulation in the context of Radio broadcasting

Radio broadcasting is the transmission of electromagnetic radiation (radio waves) to receivers over a wide area. Most broadcasts are audio (sound), sometimes with embedded metadata. Listeners require a broadcast radio receiver to receive these signals. "Terrestrial" broadcasts, including AM, FM, and DAB stations, originate from land-based transmitters, whereas "satellite radio" signals originate from a satellite in Earth orbit.

Stations may produce their own programming or be affiliated with a radio network that provides content either through broadcast syndication or by simulcasting, or both. The most common transmission technologies are analog and digital. Analog radio uses one of two modulation methods: amplitude modulation (AM) or frequency modulation (FM). Digital radio stations transmit using one of several digital audio standards, such as DAB (Digital Audio Broadcasting), HD Radio, or DRM (Digital Radio Mondiale).

↑ Return to Menu

Modulation in the context of Data communication

Data communication is the transfer of data over a point-to-point or point-to-multipoint communication channel. Data communication comprises data transmission and data reception and can be classified as analog transmission and digital communications.

Analog data communication conveys voice, data, image, signal or video information using a continuous signal, which varies in amplitude, phase, or some other property. In baseband analog transmission, messages are represented by a sequence of pulses by means of a line code; in passband analog transmission, they are communicated by a limited set of continuously varying waveforms, using a digital modulation method. Passband modulation and demodulation is carried out by modem equipment.

↑ Return to Menu

Modulation in the context of Carrier wavelength

In telecommunications, a carrier wave, carrier signal, or just carrier, is a periodic waveform (usually sinusoidal) that conveys information through a process called modulation. One or more of the wave's properties, such as amplitude or frequency, are modified by an information bearing signal, called the message signal or modulation signal. The carrier frequency is usually much higher than the message signal frequency because it is usually impractical to transmit signals with low frequencies due to larger wavelength than antenna size.

The purpose of the carrier is usually either to transmit the information through space as an electromagnetic wave (as in radio communication), or to allow several carriers at different frequencies to share a common physical transmission medium by frequency division multiplexing (as in a cable television system).

↑ Return to Menu