Quotient in the context of "Repeating decimal"

Play Trivia Questions online!

or

Skip to study material about Quotient in the context of "Repeating decimal"

Ad spacer

⭐ Core Definition: Quotient

In arithmetic, a quotient (from Latin: quotiens 'how many times', pronounced /ˈkwʃənt/) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics. It has two definitions: either the integer part of a division (in the case of Euclidean division) or a fraction or ratio (in the case of a general division). For example, when dividing 20 (the dividend) by 3 (the divisor), the quotient is 6 (with a remainder of 2) in the first sense and (a repeating decimal) in the second sense.

In metrology (International System of Quantities and the International System of Units), "quotient" refers to the general case with respect to the units of measurement of physical quantities. Ratios is the special case for dimensionless quotients of two quantities of the same kind.Quotients with a non-trivial dimension and compound units, especially when the divisor is a duration (e.g., "per second"), are known as rates.For example, density (mass divided by volume, in units of kg/m) is said to be a "quotient", whereas mass fraction (mass divided by mass, in kg/kg or in percent) is a "ratio". Specific quantities are intensive quantities resulting from the quotient of a physical quantity by mass, volume, or other measures of the system "size".

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Quotient in the context of Rational number

In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator p and a non-zero denominator q. For example, is a rational number, as is every integer (for example, ). The set of all rational numbers is often referred to as "the rationals", and is closed under addition, subtraction, multiplication, and division by a nonzero rational number. It is a field under these operations and therefore also calledthe field of rationals or the field of rational numbers. It is usually denoted by boldface Q, or blackboard bold

A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of digits (example: 3/4 = 0.75), or eventually begins to repeat the same finite sequence of digits over and over (example: 9/44 = 0.20454545...). This statement is true not only in base 10, but also in every other integer base, such as the binary and hexadecimal ones (see Repeating decimal § Extension to other bases).

↑ Return to Menu

Quotient in the context of Intelligence quotient

An intelligence quotient (IQ) is a total score derived from a set of standardized tests or subtests designed to assess human intelligence. Originally, IQ was a score obtained by dividing a person's estimated mental age, obtained by administering an intelligence test, by the person's chronological age. The resulting fraction (quotient) was multiplied by 100 to obtain the IQ score. For modern IQ tests, the raw score is transformed to a normal distribution with mean 100 and standard deviation 15. This results in approximately two-thirds of the population scoring between IQ 85 and IQ 115 and about 2 percent each above 130 and below 70.

Scores from intelligence tests are estimates of intelligence. Unlike quantities such as distance and mass, a concrete measure of intelligence cannot be achieved given the abstract nature of the concept of "intelligence". IQ scores have been shown to be associated with factors such as nutrition, parental socioeconomic status, morbidity and mortality, parental social status, and perinatal environment. While the heritability of IQ has been studied for nearly a century, there is still debate over the significance of heritability estimates and the mechanisms of inheritance. The best estimates for heritability range from 40 to 60% of the variance between individuals in IQ being explained by genetics.

↑ Return to Menu

Quotient in the context of Rates of change

In mathematics, a rate is the quotient of two quantities, often represented as a fraction. If the divisor (or fraction denominator) in the rate is equal to one expressed as a single unit, and if it is assumed that this quantity can be changed systematically (i.e., is an independent variable), then the dividend (the fraction numerator) of the rate expresses the corresponding rate of change in the other (dependent) variable. In some cases, it may be regarded as a change to a value, which is caused by a change of a value in respect to another value. For example, acceleration is a change in velocity with respect to time.

Temporal rate is a common type of rate, in which the denominator is a time duration ("per unit of time"), such as in speed, heart rate, and flux. In fact, often rate is a synonym of rhythm or frequency, a count per second (i.e., hertz); e.g., radio frequencies or sample rates.In describing the units of a rate, the word "per" is used to separate the units of the two measurements used to calculate the rate; for example, a heart rate is expressed as "beats per minute".

↑ Return to Menu

Quotient in the context of Division (mathematics)

Division is one of the four basic operations of arithmetic. The other operations are addition, subtraction, and multiplication. What is being divided is called the dividend, which is divided by the divisor, and the result is called the quotient.

At an elementary level the division of two natural numbers is, among other possible interpretations, the process of calculating the number of times one number is contained within another. For example, if 20 apples are divided evenly between 4 people, everyone receives 5 apples (see picture). However, this number of times or the number contained (divisor) need not be integers.

↑ Return to Menu

Quotient in the context of Remainder

In mathematics, the remainder is the amount "left over" after performing some computation. In arithmetic, the remainder is the integer "left over" after dividing one integer by another to produce an integer quotient (integer division). In algebra of polynomials, the remainder is the polynomial "left over" after dividing one polynomial by another. The modulo operation is the operation that produces such a remainder when given a dividend and divisor.

Alternatively, a remainder is also what is left after subtracting one number from another, although this is more precisely called the difference. This usage can be found in some elementary textbooks; colloquially it is replaced by the expression "the rest" as in "Give me two dollars back and keep the rest." However, the term "remainder" is still used in this sense when a function is approximated by a series expansion, where the error expression ("the rest") is referred to as the remainder term.

↑ Return to Menu

Quotient in the context of Dot product

In mathematics, the dot product is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the scalar product of two vectors is the dot product of their Cartesian coordinates, and is independent from the choice of a particular Cartesian coordinate system. The terms "dot product" and "scalar product" are often used interchangeably when a Cartesian coordinate system has been fixed once for all. The scalar product being a particular inner product, the term "inner product" is also often used.

Algebraically, the dot product is the sum of the products of the corresponding entries of the two sequences of numbers. Geometrically, the scalar product of two vectors is the product of their lengths and the cosine of the angle between them. These definitions are equivalent when using Cartesian coordinates. In modern geometry, Euclidean spaces are often defined by using vector spaces. In this case, the scalar product is used for defining lengths (the length of a vector is the square root of the scalar product of the vector by itself) and angles (the cosine of the angle between two vectors is the quotient of their scalar product by the product of their lengths).

↑ Return to Menu

Quotient in the context of Area density

The area density (also known as areal density, surface density, superficial density, column density, or density thickness) of a two-dimensional object is defined as the quotient of mass by area. The SI derived unit is the "kilogram per square metre" (unit symbol kg·m).

In the paper and fabric industries, it is called grammage and is expressed in grams per square meter (g/m); for paper in particular, it may be expressed as pounds per ream of standard sizes ("basis ream").

↑ Return to Menu