In physics, quantum tunnelling, barrier penetration, or simply tunnelling is a quantum mechanical phenomenon in which an object such as an electron or atom passes through a potential energy barrier that, according to classical mechanics, should not be passable due to the object not having sufficient energy to pass or surmount the barrier.
Tunnelling is a consequence of the wave nature of matter and quantum indeterminacy. The quantum wave function describes the states of a particle or other physical system and wave equations such as the Schrödinger equation describe their evolution. In a system with a short, narrow potential barrier, a small part of wavefunction can appear outside of the barrier representing a probability for tunnelling through the barrier.