Quadratic reciprocity in the context of "Carl Friedrich Gauss"

Play Trivia Questions online!

or

Skip to study material about Quadratic reciprocity in the context of "Carl Friedrich Gauss"

Ad spacer

⭐ Core Definition: Quadratic reciprocity

In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard statement is:

This law, together with its supplements, allows the easy calculation of any Legendre symbol, making it possible to determine whether there is an integer solution for any quadratic equation of the form for an odd prime ; that is, to determine the "perfect squares" modulo . However, this is a non-constructive result: it gives no help at all for finding a specific solution; for this, other methods are required. For example, in the case using Euler's criterion one can give an explicit formula for the "square roots" modulo of a quadratic residue , namely,

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Quadratic reciprocity in the context of Carl Friedrich Gauss

Johann Carl Friedrich Gauss (/ɡs/ ; German: Gauß; [kaʁl ˈfʁiːdʁɪç ˈɡaʊs] ; Latin: Carolus Fridericus Gauss; 30 April 1777 – 23 February 1855) was a German mathematician, astronomer, geodesist, and physicist, who contributed to many fields in mathematics and science. He was director of the Göttingen Observatory in Germany and professor of astronomy from 1807 until his death in 1855.

While studying at the University of Göttingen, he propounded several mathematical theorems. As an independent scholar, he wrote the masterpieces Disquisitiones Arithmeticae and Theoria motus corporum coelestium. Gauss produced the second and third complete proofs of the fundamental theorem of algebra. In number theory, he made numerous contributions, such as the composition law, the law of quadratic reciprocity and triangular case of the Fermat polygonal number theorem. He also contributed to the theory of binary and ternary quadratic forms, the construction of the heptadecagon, and the theory of hypergeometric series. Due to Gauss's extensive and fundamental contributions to science and mathematics, more than 100 mathematical and scientific concepts are named after him.

↓ Explore More Topics
In this Dossier