Purple sulfur bacteria in the context of Purple non-sulfur bacteria


Purple sulfur bacteria in the context of Purple non-sulfur bacteria

⭐ Core Definition: Purple sulfur bacteria

The purple sulfur bacteria (PSB) are part of a group of Pseudomonadota capable of photosynthesis, collectively referred to as purple bacteria. They are anaerobic or microaerophilic, and are often found in stratified water environments including hot springs, stagnant water bodies, as well as microbial mats in intertidal zones. Unlike plants, algae, and cyanobacteria, purple sulfur bacteria do not use water as their reducing agent, and therefore do not produce oxygen. Instead, they can use sulfur in the form of sulfide or thiosulfate as the electron donor in their photosynthetic pathways. Some species can use H2, Fe, or NO2 as well. The sulfur is oxidized to produce granules of elemental sulfur. This, in turn, may be oxidized to form sulfuric acid.

The purple sulfur bacteria are largely divided into two families, the Chromatiaceae and the Ectothiorhodospiraceae, which produce internal and external sulfur granules respectively, and show differences in the structure of their internal membranes. They make up part of the order Chromatiales, included in the Gammaproteobacteria. The genus Halothiobacillus is also included in the Chromatiales, in its own family, but it is not photosynthetic.

↓ Menu
HINT:

In this Dossier

Purple sulfur bacteria in the context of Purple bacteria

Purple bacteria or purple photosynthetic bacteria are Gram-negative proteobacteria that are phototrophic, capable of producing their own food via photosynthesis. They are pigmented with bacteriochlorophyll a or b, together with various carotenoids, which give them colours ranging between purple, red, brown, and orange. They may be divided into two groups – purple sulfur bacteria (Chromatiales, in part) and purple non-sulfur bacteria. Purple bacteria are anoxygenic phototrophs widely spread in nature, but especially in aquatic environments, where there are anoxic conditions that favor the synthesis of their pigments.

View the full Wikipedia page for Purple bacteria
↑ Return to Menu

Purple sulfur bacteria in the context of Phototroph

Phototrophs (from Ancient Greek φῶς, φωτός (phôs, phōtós) 'light' and τροφή (trophḗ) 'nourishment') are organisms that carry out photon capture to acquire energy. They use the energy from light to carry out various cellular metabolic processes. It is a common misconception that phototrophs are obligatorily photosynthetic. Many, but not all, phototrophs photosynthesize: they anabolically convert carbon dioxide into biomolecules to be utilized structurally (e.g. cellulose and membrane lipids), functionally (e.g. vitamins, nucleotides, and amino acids), or as a source for later catabolic processes (e.g. starches, sugars and fats). All phototrophs either use electron transport chains or direct proton pumping to establish an electrochemical gradient, which is utilized by ATP synthase to provide adenosine triphosphate (ATP) for the cell. Phototrophs can be either autotrophs or heterotrophs. If their electron and hydrogen donors are inorganic compounds (e.g., Na
2
S
2
O
3
, as in some purple sulfur bacteria, or H
2
S
, as in some green sulfur bacteria) they can be also called lithotrophs, and so, some photoautotrophs are also called photolithoautotrophs. Examples of phototroph organisms are Rhodobacter capsulatus, Chromatium, and Chlorobium.

View the full Wikipedia page for Phototroph
↑ Return to Menu

Purple sulfur bacteria in the context of Chromatium

Chromatium is a genus of photoautotrophic Gram-negative bacteria which are found in water. The cells are straight rod-shaped or slightly curved. They belong to the purple sulfur bacteria and oxidize sulfide to produce sulfur which is deposited in intracellular granules of the cytoplasm.

View the full Wikipedia page for Chromatium
↑ Return to Menu