Anoxygenic photosynthesis in the context of "Purple bacteria"

Play Trivia Questions online!

or

Skip to study material about Anoxygenic photosynthesis in the context of "Purple bacteria"

Ad spacer

⭐ Core Definition: Anoxygenic photosynthesis

Anoxygenic photosynthesis is a special form of photosynthesis used by some bacteria and archaea, which differs from the better known oxygenic photosynthesis in plants and cyanobacteria in the reductant used (e.g. hydrogen sulfide instead of water) and the byproduct generated (e.g. elemental sulfur instead of molecular oxygen).

Unlike oxygenic phototrophs that only use the Calvin cycle to fix carbon dioxide, anoxygenic phototrophs can use both the Calvin cycle and the reverse TCA cycle to fix carbon dioxide. Additionally, unlike its oxygenic counterpart that predominantly uses chlorophyll, this type of photosynthesis uses the bacteriochlorophyll (BChl) to utilize light as an energy source. A precursor to oxygenic photosynthesis but having been developed after chemolithoautotrophy, anoxygenic photosynthesis uses one of two reaction centers while oxygenic photosynthesis uses both type I and type II reaction centers.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Anoxygenic photosynthesis in the context of Purple bacteria

Purple bacteria or purple photosynthetic bacteria are Gram-negative proteobacteria that are phototrophic, capable of producing their own food via photosynthesis. They are pigmented with bacteriochlorophyll a or b, together with various carotenoids, which give them colours ranging between purple, red, brown, and orange. They may be divided into two groups – purple sulfur bacteria (Chromatiales, in part) and purple non-sulfur bacteria. Purple bacteria are anoxygenic phototrophs widely spread in nature, but especially in aquatic environments, where there are anoxic conditions that favor the synthesis of their pigments.

↓ Explore More Topics
In this Dossier

Anoxygenic photosynthesis in the context of Photoautotroph

Photoautotrophs are organisms that can utilize light energy from sunlight, and elements (such as carbon) from inorganic compounds, to produce organic materials needed to sustain their own metabolism (i.e. autotrophy). Such biological activities are known as photosynthesis, and examples of such organisms include plants, algae and cyanobacteria.

Eukaryotic photoautotrophs absorb photonic energy through the photopigment chlorophyll (a porphyrin derivative) in their endosymbiont chloroplasts, while prokaryotic photoautotrophs use chlorophylls and bacteriochlorophylls present in free-floating cytoplasmic thylakoids. Plants, algae, and cyanobacteria perform oxygenic photosynthesis that produces oxygen as a byproduct, while some bacteria perform anoxygenic photosynthesis.

↑ Return to Menu

Anoxygenic photosynthesis in the context of Photosynthesis

Photosynthesis (/ˌftəˈsɪnθəsɪs/ FOH-tə-SINTH-ə-sis) is a system of biological processes by which photopigment-bearing autotrophic organisms, such as most plants, algae and cyanobacteria, convert light energy — typically from sunlight — into the chemical energy necessary to fuel their metabolism. The term photosynthesis usually refers to oxygenic photosynthesis, a process that releases oxygen as a byproduct of water splitting. Photosynthetic organisms store the converted chemical energy within the bonds of intracellular organic compounds (complex compounds containing carbon), typically carbohydrates like sugars (mainly glucose, fructose and sucrose), starches, phytoglycogen and cellulose. When needing to use this stored energy, an organism's cells then metabolize the organic compounds through cellular respiration. Photosynthesis plays a critical role in producing and maintaining the oxygen content of the Earth's atmosphere, and it supplies most of the biological energy necessary for complex life on Earth.

Some organisms also perform anoxygenic photosynthesis, which does not produce oxygen. Some bacteria (e.g. purple bacteria) uses bacteriochlorophyll to split hydrogen sulfide as a reductant instead of water, releasing sulfur instead of oxygen, which was a dominant form of photosynthesis in the euxinic Canfield oceans during the Boring Billion. Archaea such as Halobacterium also perform a type of non-carbon-fixing anoxygenic photosynthesis, where the simpler photopigment retinal and its microbial rhodopsin derivatives are used to absorb green light and produce a proton (hydron) gradient across the cell membrane, and the subsequent ion movement powers transmembrane proton pumps to directly synthesize adenosine triphosphate (ATP), the "energy currency" of cells. Such archaeal photosynthesis might have been the earliest form of photosynthesis that evolved on Earth, as far back as the Paleoarchean, preceding that of cyanobacteria (see Purple Earth hypothesis).

↑ Return to Menu

Anoxygenic photosynthesis in the context of Chlorophyll

Chlorophyll is any of several related green pigments found in cyanobacteria and in the chloroplasts of algae and plants. Its name is derived from the Greek words χλωρός (khloros, "pale green") and φύλλον (phyllon, "leaf"). Chlorophyll allows plants to absorb energy from light. Those pigments are involved in oxygenic photosynthesis, as opposed to bacteriochlorophylls, related molecules found only in bacteria and involved in anoxygenic photosynthesis.

Chlorophylls absorb light most strongly in the blue portion of the electromagnetic spectrum as well as the red portion. Conversely, it is a poor absorber of green and near-green portions of the spectrum. Hence chlorophyll-containing tissues appear green because green light, diffusively reflected by structures like cell walls, is less absorbed. Two types of chlorophyll exist in the photosystems of green plants: chlorophyll a and b.

↑ Return to Menu

Anoxygenic photosynthesis in the context of Bacteriochlorophyll

Bacteriochlorophylls (BChl) are photosynthetic pigments that occur in various phototrophic bacteria. They were discovered by C. B. van Niel in 1932. They are related to chlorophylls, which are the primary pigments in plants, algae, and cyanobacteria. Organisms that contain bacteriochlorophyll conduct photosynthesis to sustain their energy requirements, but the process is anoxygenic and does not produce oxygen as a byproduct. They use wavelengths of light not absorbed by plants or cyanobacteria. Replacement of Mg with protons gives bacteriophaeophytin (BPh), the phaeophytin form.

↑ Return to Menu

Anoxygenic photosynthesis in the context of Boring Billion

The Boring Billion, otherwise known as the Mid Proterozoic and Earth's Middle Ages, is an informal geological time period between 1.8 and 0.8 billion years ago (Ga) during the middle Proterozoic eon spanning from the Statherian to the Tonian periods, characterized by more or less tectonic stability, climatic stasis and slow biological evolution. Although it is bordered by two different oxygenation events (the Great Oxygenation Event and Neoproterozoic Oxygenation Event) and two global glacial events (the Huronian and Cryogenian glaciations), the Boring Billion period itself actually had very low oxygen levels and no geological evidence of glaciations.

The oceans during the Boring Billion may have been oxygen-poor, nutrient-poor and sulfidic (euxinia), populated by mainly anoxygenic purple bacteria, a type of bacteriochlorophyll-based photosynthetic bacteria which uses hydrogen sulfide (H2S) for carbon fixation instead of water and produces sulfur as a byproduct instead of oxygen. This is known as a Canfield ocean, and such composition may have caused the oceans to be colored black-and-milky-turquoise instead of blue or green as later. (By contrast, during the much earlier Purple Earth phase during the Archean, photosynthesis was performed mostly by archaeal colonies using retinal-based proton pumps that absorb green light, and the oceans would be magenta-purple.)

↑ Return to Menu