Pump-jet in the context of "Thrust-to-weight ratio"

Play Trivia Questions online!

or

Skip to study material about Pump-jet in the context of "Thrust-to-weight ratio"

Ad spacer

⭐ Core Definition: Pump-jet

A pump-jet, hydrojet, or water jet is a marine system that produces a jet of water for propulsion. The mechanical arrangement may be a ducted propeller (axial-flow pump), a centrifugal pump, or a mixed flow pump which is a combination of both centrifugal and axial designs. The design also incorporates an intake to provide water to the pump and a nozzle to direct the flow of water out of the pump.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

πŸ‘‰ Pump-jet in the context of Thrust-to-weight ratio

Thrust-to-weight ratio is a dimensionless ratio of thrust to weight of a reaction engine or a vehicle with such an engine. Reaction engines include, among others, jet engines, rocket engines, pump-jets, Hall-effect thrusters, and ion thrusters – all of which generate thrust by expelling mass (propellant) in the opposite direction of intended motion, in accordance with Newton's third law. A related but distinct metric is the power-to-weight ratio, which applies to engines or systems that deliver mechanical, electrical, or other forms of power rather than direct thrust.

In many applications, the thrust-to-weight ratio serves as an indicator of performance. The ratio in a vehicle’s initial state is often cited as a figure of merit, enabling quantitative comparison across different vehicles or engine designs. The instantaneous thrust-to-weight ratio of a vehicle can vary during operation due to factors such as fuel consumption (reducing mass) or changes in gravitational acceleration, for example in orbital or interplanetary contexts.

↓ Explore More Topics
In this Dossier

Pump-jet in the context of Marine propulsion

Marine propulsion is the mechanism or system used to generate thrust to move a watercraft through water. While paddles and sails are still used on some smaller boats, most modern ships are propelled by mechanical systems consisting of an electric motor or internal combustion engine driving a propeller, or less frequently, in pump-jets, an impeller. Marine engineering is the discipline concerned with the engineering design process of marine propulsion systems.

Human-powered paddles and oars, and later, sails were the first forms of marine propulsion. Rowed galleys, some equipped with sail, played an important early role in early human seafaring and warfare. The first advanced mechanical means of marine propulsion was the marine steam engine, introduced in the early 19th century. During the 20th century it was replaced by two-stroke or four-stroke diesel engines, outboard motors, and gas turbine engines on faster ships. Marine nuclear reactors, which appeared in the 1950s, produce steam to propel warships and icebreakers; commercial application, attempted late that decade, failed to catch on. Electric motors using battery packs have been used for propulsion on submarines and electric boats and have been proposed for energy-efficient propulsion.

↑ Return to Menu

Pump-jet in the context of Jet engine

Air-breathing jet engines typically feature a rotating air compressor powered by a turbine, with the leftover power providing thrust through the propelling nozzleβ€”this process is known as the Brayton thermodynamic cycle. Jet aircraft use such engines for long-distance travel. Early jet aircraft used turbojet engines that were relatively inefficient for subsonic flight. Most modern subsonic jet aircraft use more complex high-bypass turbofan engines. They give higher speed and greater fuel efficiency than piston and propeller aeroengines over long distances. A few air-breathing engines made for high-speed applications (ramjets and scramjets) use the ram effect of the vehicle's speed instead of a mechanical compressor.

↑ Return to Menu

Pump-jet in the context of Reaction engine

A reaction engine is an engine or motor that produces thrust by expelling reaction mass (reaction propulsion), in accordance with Newton's third law of motion. This law of motion is commonly paraphrased as: "For every action force there is an equal, but opposite, reaction force."

Examples include jet engines, rocket engines, pump-jets, and more uncommon variations such as Hall effect thrusters, ion drives, mass drivers, and nuclear pulse propulsion.

↑ Return to Menu

Pump-jet in the context of Integrated electric propulsion

Integrated electric propulsion (IEP), full electric propulsion (FEP) or integrated full electric propulsion (IFEP) is an arrangement of marine propulsion systems such that gas turbines or diesel generators, or both, generate three-phase electricity that is then used to power electric motors that turn either propellers or waterjet impellors. It is a modification of the combined diesel-electric and gas propulsion system for ships which eliminates the need for clutches and reduces or eliminates the need for gearboxes by using electrical transmission rather than mechanical transmission of energy; so, it is a series hybrid electric propulsion, instead of parallel.

Some newer nuclear-powered warships also use a form of IEP. A nuclear power plant produces the steam to operate turbine generators; these in turn power electric propulsion motors.

↑ Return to Menu

Pump-jet in the context of Jet propulsion

Jet propulsion is the propulsion of an object in one direction, produced by ejecting a jet of fluid in the opposite direction. By Newton's third law, the moving body is propelled in the opposite direction to the jet. Reaction engines operating on the principle of jet propulsion include the jet engine used for aircraft propulsion, the pump-jet used for marine propulsion, and the rocket engine and plasma thruster used for spacecraft propulsion. Underwater jet propulsion is also used by several marine animals, including cephalopods and salps, with the flying squid even displaying the only known instance of jet-powered aerial flight in the animal kingdom.

↑ Return to Menu

Pump-jet in the context of Jet (fluid)

A jet is a stream of fluid that is projected into a surrounding medium, usually from some kind of a nozzle, aperture or orifice. Jets can travel long distances without dissipating.

Jet fluid has higher speed compared to the surrounding fluid medium. In the case that the surrounding medium is assumed to be made up of the same fluid as the jet, and this fluid has viscosity, some of the surrounding fluid is carried along with the jet in a process called entrainment.

↑ Return to Menu