Public key cryptography in the context of Abstract group


Public key cryptography in the context of Abstract group

Public key cryptography Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Public key cryptography in the context of "Abstract group"


⭐ Core Definition: Public key cryptography

Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions. Security of public-key cryptography depends on keeping the private key secret; the public key can be openly distributed without compromising security. There are many kinds of public-key cryptosystems, with different security goals, including digital signature, Diffie–Hellman key exchange, public-key key encapsulation, and public-key encryption.

Public key algorithms are fundamental security primitives in modern cryptosystems, including applications and protocols that offer assurance of the confidentiality and authenticity of electronic communications and data storage. They underpin numerous Internet standards, such as Transport Layer Security (TLS), SSH, S/MIME, and PGP. Compared to symmetric cryptography, public-key cryptography can be too slow for many purposes, so these protocols often combine symmetric cryptography with public-key cryptography in hybrid cryptosystems.

↓ Menu
HINT:

In this Dossier

Public key cryptography in the context of Group theory

In abstract algebra, group theory studies the algebraic structures known as groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right.

Various physical systems, such as crystals and the hydrogen atom, and three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also central to public key cryptography.

View the full Wikipedia page for Group theory
↑ Return to Menu

Public key cryptography in the context of Cryptosystem

In cryptography, a cryptosystem is a suite of cryptographic algorithms needed to implement a particular security service, such as confidentiality (encryption).

Typically, a cryptosystem consists of three algorithms: one for key generation, one for encryption, and one for decryption. The term cipher (sometimes cypher) is often used to refer to a pair of algorithms, one for encryption and one for decryption. Therefore, the term cryptosystem is most often used when the key generation algorithm is important. For this reason, the term cryptosystem is commonly used to refer to public key techniques; however both "cipher" and "cryptosystem" are used for symmetric key techniques.

View the full Wikipedia page for Cryptosystem
↑ Return to Menu