Pseudopodia in the context of "Paulinella"

Play Trivia Questions online!

or

Skip to study material about Pseudopodia in the context of "Paulinella"

Ad spacer

⭐ Core Definition: Pseudopodia

A pseudopod or pseudopodium (pl.: pseudopods or pseudopodia) is a temporary arm-like projection of an eukaryotic cell membrane that is emerged in the direction of movement. Filled with cytoplasm, pseudopodia primarily consist of actin filaments and may also contain microtubules and intermediate filaments. Pseudopods are used for motility and ingestion. They are often found in amoebas.

Different types of pseudopodia can be classified by their distinct appearances. Lamellipodia are broad and thin. Filopodia are slender, thread-like, and are supported largely by microfilaments. Lobopodia are bulbous and amoebic. Reticulopodia are complex structures bearing individual pseudopodia which form irregular nets. Axopodia are the phagocytosis type with long, thin pseudopods supported by complex microtubule arrays enveloped with cytoplasm; they respond rapidly to physical contact.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Pseudopodia in the context of Paulinella

Paulinella is a genus of at least twelve species including both freshwater and marine amoeboids. Like many members of euglyphids it is covered by rows of siliceous scales, and use filose pseudopods to crawl over the substrate of the benthic zone. Species within the group can be distinguished by features like the overall shell dimensions, the number of vertical scale rows (3-5), the number of scales per row (7–14) and the number of oral scales.

↓ Explore More Topics
In this Dossier

Pseudopodia in the context of Amoeba

An amoeba or ameba /əˈmbə/ (pl.: amoebas or amebas (less commonly, amoebae or amebae /əˈmbi/)), often called an amoeboid, is a type of cell or unicellular organism with the ability to alter its shape, primarily by extending and retracting pseudopods. Amoebae do not form a single taxonomic group; instead, they are found in every major lineage of eukaryotic organisms. Amoeboid cells occur not only among the protozoa, but also in fungi, algae, and animals.

Microbiologists often use the terms "amoeboid" and "amoeba" interchangeably for any organism that exhibits amoeboid movement.

↑ Return to Menu

Pseudopodia in the context of Amoeba proteus

Amoeba proteus is a large species of amoeba closely related to another genus of giant amoebae, Chaos. As such, the species is sometimes given the alternative scientific name Chaos diffluens.

This protozoan uses extensions called pseudopodia to move and to eat smaller unicellular organisms. Food is enveloped inside the cell's cytoplasm in a food vacuole, where ingested matter is slowly broken down by enzymes. A. proteus inhabits freshwater environments and feeds on protozoans, algae, rotifers, and even other smaller amoebae. They are colorless, but they may have colored inclusions derived from their food.

↑ Return to Menu

Pseudopodia in the context of Actinophryid

The actinophryids are an order of heliozoa, a polyphyletic array of stramenopiles, having a close relationship with pedinellids and Ciliophrys. They are common in fresh water and occasionally found in marine and soil habitats. Actinophryids are unicellular and roughly spherical in shape, with many axopodia that radiate outward from the cell body. Axopodia are a type of pseudopodia that are supported by hundreds of microtubules arranged in interlocking spirals and forming a needle-like internal structure or axoneme. Small granules, extrusomes, that lie under the membrane of the body and axopodia capture flagellates, ciliates and small metazoa that make contact with the arms.

↑ Return to Menu

Pseudopodia in the context of Heliozoa

Heliozoa, commonly known as sun-animalcules, are microbial eukaryotes (protists) with stiff arms (axopodia) radiating from their spherical bodies, which are responsible for their common name. The axopodia are microtubule-supported projections from the amoeboid cell body, and are variously used for capturing food, sensation, movement, and attachment. They are similar to Radiolaria, but they are distinguished from them by lacking central capsules and other complex skeletal elements, although some produce simple scales and spines. They may be found in both freshwater and marine environments.

↑ Return to Menu