Protozoa (sg.: protozoan or protozoon; alternative plural: protozoans) are a polyphyletic group of single-celledeukaryotes, either free-living or parasitic, that feed on organic matter such as other microorganisms or organic debris. Historically, protozoans were regarded as "one-celled animals".
When first introduced by Georg Goldfuss, in 1818, the taxon Protozoa was erected as a class within the Animalia, with the word 'protozoa' meaning "first animals", because they often possess animal-like behaviours, such as motility and predation, and lack a cell wall, as found in plants and many algae.
Protozoa in the context of Biocommunication (science)
In the study of the biological sciences, biocommunication is any specific type of communication within (intraspecific) or between (interspecific) species of plants, animals, fungi, protozoa and microorganisms. Communication means sign-mediated interactions following three levels of rules (syntactic, pragmatic and semantic). Signs in most cases are chemical molecules (semiochemicals), but also tactile, or as in animals also visual and auditive. Biocommunication of animals may include vocalizations (as between competing bird species), or pheromone production (as between various species of insects), chemical signals between plants and animals (as in tannin production used by vascular plants to warn away insects), and chemically mediated communication between plants and within plants.
Biocommunication of fungi demonstrates that mycelia communication integrates interspecific sign-mediated interactions between fungal organisms, soil bacteria and plant root cells without which plant nutrition could not be organized. Biocommunication of Ciliates identifies the various levels and motifs of communication in these unicellulareukaryotes. Biocommunication of Archaea represents key levels of sign-mediated interactions in the evolutionarily oldest akaryotes. Biocommunication of phages demonstrates that the most abundant living agents on this planet coordinate and organize by sign-mediated interactions. Biocommunication is the essential tool to coordinate behavior of various cell types of immune systems.
Marine microorganisms have been variously estimated to make up between 70 and 90 percent of the biomass in the ocean. Taken together they form the marine microbiome. Over billions of years this microbiome has evolved many life styles and adaptations and come to participate in the global cycling of almost all chemical elements. Microorganisms are crucial to nutrient recycling in ecosystems as they act as decomposers. They are also responsible for nearly all photosynthesis that occurs in the ocean, as well as the cycling of carbon, nitrogen, phosphorus and other nutrients and trace elements. Marine microorganisms sequester large amounts of carbon and produce much of the world's oxygen.
A unicellular organism, also known as a single-celled organism, is an organism that consists of a single cell, unlike a multicellular organism that consists of multiple cells. Organisms fall into two general categories: prokaryotic organisms and eukaryotic organisms. Most prokaryotes are unicellular and are classified into bacteria and archaea. Many eukaryotes are multicellular, but some are unicellular such as protozoa, unicellular algae, and unicellular fungi. Unicellular organisms are thought to be the oldest form of life, with early organisms emerging 3.5–3.8 billion years ago.
Although some prokaryotes live in colonies, they are not specialised cells with differing functions. These organisms live together, and each cell must carry out all life processes to survive. In contrast, even the simplest multicellular organisms have cells that depend on each other to survive.
An anaerobic organism or anaerobe is any organism that does not require molecular oxygen for its growth. It may react negatively or even die in the presence of free oxygen. Anaerobic organisms do not use oxygen as a terminal electron acceptor in their respiration process to produce energy, but a less powerful oxidizing agent, such as nitrate, ferric ion, Mn(IV), sulfate or bicarbonate anions. In contrast, an aerobic organism (aerobe) is an organism that requires a sufficiently oxygenated environment to respire, produce its energy, and thrive. Because the anaerobic energy production was the first mechanism to be used by living microorganisms in their evolution and is much less efficient than the aerobic pathway, anaerobes are practically, de facto, always unicellular organisms (e.g. bacteria and archaea (prokaryotes), or protozoans (eukaryotes). However, a minuscule multicellular organism, with an exceptionally rare metabolism and surviving in a hypersaline brine pool in the darkness of the bottom of the Mediterranean Sea, has been recently discovered. Meanwhile, it remains a scientific curiosity, as the much higher energy requirements of most multicellular organisms cannot be met by anaerobic respiration. Most fungi (eukaryotes) are obligate aerobes, requiring oxygen to survive and grow; however, some species, such as the Chytridiomycota that reside in the rumen of cattle, are obligate anaerobes; for these species, anaerobic respiration is used because oxygen would disrupt their metabolism or kill them. The deep seafloor and its underlying unconsolidatedsediments ranks among the largest potential habitats for anaerobic microorganisms on Earth. Moreover, chemoautotroph microbes also thrive around hydrothermal vents, discharging hot water on the oceanseabed near mid-ocean ridges, where anaerobic conditions prevail. These microbes produce energy in the absence of sunlight or oxygen through a process called anaerobic respiration, whereby inorganic compounds and ions such as protons (H), elemental sulfur and its derivatives (SO2−4, S2O2−3), or ferric ions, are reduced to drive oxidative phosphorylation.
A characteristic that places fungi in a different kingdom from plants, bacteria, and some protists is chitin in their cell walls. Fungi, like animals, are heterotrophs; they acquire their food by absorbing dissolved organic molecules, typically by secreting digestive enzymes into their environment. Fungi do not photosynthesize. Growth is their means of mobility, except for spores (a few of which are flagellated), which may travel through the air or water. Fungi are the principal decomposers in ecological systems. These and other differences place fungi in a single group of related organisms, named the Eumycota (true fungi or Eumycetes), that share a common ancestor (i.e. they form a monophyletic group), an interpretation that is also strongly supported by molecular phylogenetics. This fungal group is distinct from the structurally similar myxomycetes (slime molds) and oomycetes (water molds). The discipline of biology devoted to the study of fungi is known as mycology (from the Greekμύκης, mykes'mushroom'). In the past, mycology was regarded as a branch of botany, although it is now known that fungi are genetically more closely related to animals than to plants.
Plankton are organisms that drift in water (or air) but are unable to actively propel themselves against currents (or wind). Marine plankton include drifting organisms that inhabit the saltwater of oceans and the brackish waters of estuaries. Freshwater plankton are similar to marine plankton, but are found in lakes and rivers. An individual plankton organism in the plankton is called a plankter. In the ocean plankton provide a crucial source of food, particularly for larger filter-feeding animals, such as bivalves, sponges, forage fish and baleen whales.
Plankton includes organisms from species across all the major biological kingdoms, ranging in size from the microscopic (such as bacteria, archaea, protozoa and microscopic algae and fungi) to larger organisms (such as jellyfish and ctenophores). This is because plankton are defined by their ecological niche and level of motility rather than by any phylogenetic or taxonomic classification. The plankton category differentiates organisms from those that can swim against a current, called nekton, and those that live on the deep sea floor, called benthos. Organisms that float on or near the water's surface are called neuston. Neuston that drift as water currents or wind take them, and lack the swimming ability to counter this, form a special subgroup of plankton. Mostly plankton just drift where currents take them, though some, like jellyfish, swim slowly but not fast enough to generally overcome the influence of currents.
Microsporidia are a group of spore-forming unicellularparasites. These spores contain an extrusion apparatus that has a coiled polar tube ending in an anchoring disc at the apical part of the spore. They were once considered protozoans or protists, but are now known to be fungi, or a sister group to true fungi. These fungal microbes are obligate eukaryotic parasites that use a unique mechanism to infect host cells. They have recently been discovered in a 2017 Cornell study to infect Coleoptera (beetles) on a large scale. So far, about 1500 of the probably more than one million species are named. Microsporidia are restricted to animal hosts, and all major groups of animals host microsporidia. Most infect insects, but they are also responsible for common diseases of crustaceans and fish. The named species of microsporidia usually infect one host species or a group of closely related taxa. Approximately 10 percent of the known species are parasites of vertebrates—several species, most of which are opportunistic, can infect humans, in whom they can cause microsporidiosis.
After infection they influence their hosts in various ways and all organs and tissues are invaded, though generally by different species of specialised microsporidia. Some species are lethal, and a few are used in biological control of insect pests. Parasitic castration, gigantism, or change of host sex are all potential effects of microsporidian parasitism (in insects). In the most advanced cases of parasitism the microsporidium rules the host cell completely and controls its metabolism and reproduction, forming a xenoma.
Bacteriology is the branch and specialty of biology that studies the morphology, ecology, genetics and biochemistry of bacteria as well as many other aspects related to them. This subdivision of microbiology involves the identification, classification, and characterization of bacterial species. Because of the similarity of thinking and working with microorganisms other than bacteria, such as protozoa, fungi, and non-microorganism viruses, there has been a tendency for the field of bacteriology to extend as microbiology. The terms were formerly often used interchangeably. However, bacteriology can be classified as a distinct science.
There are six major parasitic strategies of exploitation of animal hosts, namely parasitic castration, directly transmitted parasitism (by contact), trophically-transmitted parasitism (by being eaten), vector-transmitted parasitism, parasitoidism, and micropredation. One major axis of classification concerns invasiveness: an endoparasite lives inside the host's body; an ectoparasite lives outside, on the host's surface.
Malaria is a mosquito-borne infectious disease that affects vertebrates and Anophelesmosquitoes. Human malaria causes symptoms that typically include fever, fatigue, vomiting, and headaches. In severe cases, it can cause jaundice, seizures, coma, or death. Symptoms usually begin 10 to 15 days after being bitten by an infected Anopheles mosquito. If not properly treated, people may have recurrences of the disease months later. In those who have recently survived an infection, reinfection usually causes milder symptoms. This partial resistance disappears over months to years if the person has no continuing exposure to malaria. The mosquitoes themselves are harmed by malaria, causing reduced lifespans in those infected by it.
Malaria is caused by single-celled eukaryotes of the genus Plasmodium. In mammals, it is spread through bites of infected female Anopheles mosquitoes. The mosquito bite introduces the parasites from the mosquito's saliva into the blood. The parasites travel to the liver, where they mature and reproduce. Five species of Plasmodium commonly infect humans. The three species associated with more severe cases are P. falciparum (which is responsible for the vast majority of malaria deaths), P. vivax, and P. knowlesi (a simian malaria that spills over into thousands of people a year). P. ovale and P. malariae generally cause a milder form of malaria. Malaria is typically diagnosed by the microscopic examination of blood using blood films, or with antigen-basedrapid diagnostic tests. Methods that use the polymerase chain reaction to detect the parasite's DNA have been developed, but they are not widely used in areas where malaria is common, due to their cost and complexity.
A nummulite is a large lenticularfossil, characterised by its numerous coils, subdivided by septa into chambers. They are the shells of the fossil and present-day marine protozoanNummulites, a type of foraminiferan. Nummulites commonly vary in diameter from 13 to 50 mm (0.51 to 1.97 in) and are common in Eocene to Miocene marine rocks, particularly around southwest Asia and the Mediterranean in the area that once constituted the Tethys Ocean, such as Eocene limestones from Egypt or from Pakistan. Fossils up to six inches wide are found in the Middle Eocene rocks of Turkey. They are valuable as index fossils.
The ancient Egyptians used nummulite shells as coins and the pyramids were constructed using limestone that contained nummulites. It is not surprising then that the name Nummulites is a diminutive form of the Latinnummulus 'little coin', a reference to their shape.
Gas exchange is the physiological process by which gases move passively by diffusion across a surface. For example, this surface might be the air/water interface of a water body, the surface of a gas bubble in a liquid, a gas-permeable membrane, or a biological membrane that forms the boundary between an organism and its extracellular environment.
Gases are constantly consumed and produced by cellular and metabolic reactions in most living things, so an efficient system for gas exchange between, ultimately, the interior of the cell(s) and the external environment is required. Small, particularly unicellular organisms, such as bacteria and protozoa, have a high surface-area to volume ratio. In these creatures the gas exchange membrane is typically the cell membrane. Some small multicellular organisms, such as flatworms, are also able to perform sufficient gas exchange across the skin or cuticle that surrounds their bodies. However, in most larger organisms, which have small surface-area to volume ratios, specialised structures with convoluted surfaces such as gills, pulmonary alveoli and spongy mesophylls provide the large area needed for effective gas exchange. These convoluted surfaces may sometimes be internalised into the body of the organism. This is the case with the alveoli, which form the inner surface of the mammalianlung, the spongy mesophyll, which is found inside the leaves of some kinds of plant, or the gills of those molluscs that have them, which are found in the mantle cavity.