Protons in the context of Electronegativities


Protons in the context of Electronegativities

Protons Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Protons in the context of "Electronegativities"


⭐ Core Definition: Protons

A proton is a stable subatomic particle, symbol p, H, or H with a positive electric charge of +1 e (elementary charge). Its mass is slightly less than the mass of a neutron and approximately 1836 times the mass of an electron (the proton-to-electron mass ratio). Protons and neutrons, each with a mass of approximately one dalton, are jointly referred to as nucleons (particles present in atomic nuclei).

One or more protons are present in the nucleus of every atom. They provide the attractive electrostatic central force which binds the atomic electrons. The number of protons in the nucleus is the defining property of an element, and is referred to as the atomic number (represented by the symbol Z). Since each element is identified by the number of protons in its nucleus, each element has its own atomic number, which determines the number of atomic electrons and consequently the chemical characteristics of the element.

↓ Menu
HINT:

In this Dossier

Protons in the context of Particle physics

Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the study of combinations of protons and neutrons is called nuclear physics.

The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) and bosons (force-carrying particles). There are three generations of fermions, although ordinary matter is made only from the first fermion generation. The first generation consists of up and down quarks which form protons and neutrons, and electrons and electron neutrinos. The three fundamental interactions known to be mediated by bosons are electromagnetism, the weak interaction, and the strong interaction.

View the full Wikipedia page for Particle physics
↑ Return to Menu

Protons in the context of Neutrons

The neutron is a subatomic particle, symbol n or n
, that has no electric charge, and a mass slightly greater than that of a proton. The neutron was discovered by James Chadwick in 1932, leading to the discovery of nuclear fission in 1938, the first self-sustaining nuclear reactor (Chicago Pile-1, 1942), and the first nuclear weapon (Trinity, 1945).

Neutrons are found, together with a similar number of protons in the nuclei of atoms. Atoms of a chemical element that differ only in neutron number are called isotopes. Free neutrons are produced copiously in nuclear fission and fusion. They are a primary contributor to the nucleosynthesis of chemical elements within stars through fission, fusion, and neutron capture processes. Neutron stars, formed from massive collapsing stars, consist of neutrons at the density of atomic nuclei but a total mass more than the Sun.

View the full Wikipedia page for Neutrons
↑ Return to Menu

Protons in the context of Isotope

Isotopes are distinct nuclear species (or nuclides) of the same chemical element. They have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), but different nucleon numbers (mass numbers) due to different numbers of neutrons in their nuclei. While all isotopes of a given element have virtually the same chemical properties, they have different atomic masses and physical properties.

The term isotope comes from the Greek roots isos (ἴσος "equal") and topos (τόπος "place"), meaning "the same place": different isotopes of an element occupy the same place on the periodic table. It was coined by Scottish doctor and writer Margaret Todd in a 1913 suggestion to the British chemist Frederick Soddy, who popularized the term.

View the full Wikipedia page for Isotope
↑ Return to Menu

Protons in the context of Charged particle

In physics, a charged particle is a particle with an electric charge. For example, some elementary particles, like the electron or quarks are charged. Some composite particles like protons are charged particles. An ion, such as a molecule or atom with a surplus or deficit of electrons relative to protons are also charged particles.

A plasma is a collection of charged particles, atomic nuclei and separated electrons, but can also be a gas containing a significant proportion of charged particles.

View the full Wikipedia page for Charged particle
↑ Return to Menu

Protons in the context of Carbon-12

Carbon-12 (C) is the most abundant of the two stable isotopes of carbon (carbon-13 being the other), amounting to 98.93% of element carbon on Earth; its abundance is due to the triple-alpha process by which it is created in stars. Carbon-12 is of particular importance in its use as the standard from which atomic masses of all nuclides are measured, thus, its atomic mass is exactly 12 daltons by definition. Carbon-12 is composed of 6 protons, 6 neutrons, and 6 electrons.

See carbon-13 for means of separating the two isotopes, thereby enriching both.

View the full Wikipedia page for Carbon-12
↑ Return to Menu

Protons in the context of Carbon-13

Carbon-13 (C) is a natural, stable isotope of carbon with a nucleus containing six protons and seven neutrons. It constitutes about 1.07% of natural carbon and is one of the so-called environmental isotopes.

View the full Wikipedia page for Carbon-13
↑ Return to Menu

Protons in the context of Carbon-14

Carbon-14, C-14, C or radiocarbon, is a radioactive isotope of carbon with an atomic nucleus containing 6 protons and 8 neutrons. Its presence in organic matter is the basis of the radiocarbon dating method pioneered by Willard Libby and colleagues (1949) to date archaeological, geological and hydrogeological samples. Carbon-14 was discovered on February 27, 1940, by Martin Kamen and Sam Ruben at the University of California Radiation Laboratory in Berkeley, California. Its existence had been suggested by Franz Kurie in 1934.

There are three naturally occurring isotopes of carbon on Earth: carbon-12 (C), which makes up 99% of all carbon on Earth; carbon-13 (C), which makes up 1%; and carbon-14 (C), which occurs in trace amounts, making up about 1.2 atoms per 10 atoms of carbon in the atmosphere. C and C are both stable; C is unstable, with half-life 5700±30 years, decaying into nitrogen-14 (
N
) through beta decay. Pure carbon-14 would have a specific activity of 62.4 mCi/mmol (2.31 GBq/mmol), or 164.9 GBq/g. The primary natural source of carbon-14 on Earth is cosmic ray action on nitrogen in the atmosphere, and it is therefore a cosmogenic nuclide. Open-air nuclear testing between 1955 and 1980 contributed to this pool, however.

View the full Wikipedia page for Carbon-14
↑ Return to Menu

Protons in the context of Nuclear transmutation

Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element. Nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus of an atom is changed.

A transmutation can be achieved either by nuclear reactions (in which an outside particle reacts with a nucleus) or by radioactive decay, where no outside cause is needed.

View the full Wikipedia page for Nuclear transmutation
↑ Return to Menu

Protons in the context of Subatomic scale

The subatomic scale is the domain of physical size that encompasses objects smaller than an atom. It is the scale at which the atomic constituents, such as the nucleus containing protons and neutrons, and the electrons in their orbitals, become apparent.

The subatomic scale includes the many thousands of times smaller subnuclear scale, which is the scale of physical size at which constituents of the protons and neutrons—particularly quarks—become apparent.

View the full Wikipedia page for Subatomic scale
↑ Return to Menu

Protons in the context of Electronegativity

Electronegativity, symbolized as χ, is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the distance at which its valence electrons reside from the charged nucleus. The higher the associated electronegativity, the more an atom or a substituent group attracts electrons. Electronegativity serves as a simple way to quantitatively estimate the bond energy, and the sign and magnitude of a bond's chemical polarity, which characterizes a bond along the continuous scale from covalent to ionic bonding. The loosely defined term electropositivity is the opposite of electronegativity: it characterizes an element's tendency to donate valence electrons.

On the most basic level, electronegativity is determined by factors like the nuclear charge (the more protons an atom has, the more "pull" it will have on electrons) and the number and location of other electrons in the atomic shells (the more electrons an atom has, the farther from the nucleus the valence electrons will be, and as a result, the less positive charge they will experience—both because of their increased distance from the nucleus and because the other electrons in the lower energy core orbitals will act to shield the valence electrons from the positively charged nucleus).

View the full Wikipedia page for Electronegativity
↑ Return to Menu

Protons in the context of Free neutron

A neutron is a subatomic particle, symbol n or n
, that has no electric charge, and a mass slightly greater than that of a proton. The neutron was discovered by James Chadwick in 1932, leading to the discovery of nuclear fission in 1938, the first self-sustaining nuclear reactor (Chicago Pile-1, 1942), and the first nuclear weapon (Trinity, 1945).

Neutrons are found, together with a similar number of protons in the nuclei of atoms. Atoms of a chemical element that differ only in neutron number are called isotopes. Free neutrons are produced copiously in nuclear fission and fusion. They are a primary contributor to the nucleosynthesis of chemical elements within stars through fission, fusion, and neutron capture processes. Neutron stars, formed from massive collapsing stars, consist of neutrons at the density of atomic nuclei but a total mass more than the Sun.

View the full Wikipedia page for Free neutron
↑ Return to Menu

Protons in the context of Light-dependent reactions

Light-dependent reactions are the chemical reactions involved in photosynthesis induced by light; all light-dependent reactions occur in thylakoids. There are two light-dependent reactions: the first occurs at photosystem II (PSII) and the second occurs at photosystem I (PSI).

PSII absorbs a photon to produce a so-called high energy electron which transfers via an electron transport chain to cytochrome b6f and then to PSI. The then-reduced PSI, absorbs another photon producing a more highly reducing electron, which converts NADP to NADPH. In oxygenic photosynthesis, the first electron donor is water, creating oxygen (O2) as a by-product. In anoxygenic photosynthesis, various electron donors are used.Cytochrome b6f and ATP synthase work together to produce ATP (photophosphorylation) in two distinct ways. In non-cyclic photophosphorylation, cytochrome b6f uses electrons from PSII and energy from PSI to pump protons from the cytoplasm (or stroma in chloroplasts), to the lumen of the thylakoid. The resulting proton gradient across the thylakoid membrane creates a proton-motive force, used by ATP synthase to form ATP. In cyclic photophosphorylation, cytochrome b6f uses electrons and energy from PSI to create more ATP and to stop the production of NADPH. Cyclic phosphorylation is important to create ATP and maintain NADPH in the right proportion for the light-independent reactions.

View the full Wikipedia page for Light-dependent reactions
↑ Return to Menu

Protons in the context of Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near resonance, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the isotope involved; in practical applications with static magnetic fields up to ca. 20 tesla, the frequency is similar to VHF and UHF television broadcasts (60–1000 MHz). NMR results from specific magnetic properties of certain atomic nuclei. High-resolution nuclear magnetic resonance spectroscopy is widely used to determine the structure of organic molecules in solution and study molecular physics and crystals as well as non-crystalline materials. NMR is also routinely used in advanced medical imaging techniques, such as in magnetic resonance imaging (MRI). The original application of NMR to condensed matter physics is nowadays mostly devoted to strongly correlated electron systems. It reveals large many-body couplings by fast broadband detection and should not be confused with solid state NMR, which aims at removing the effect of the same couplings by Magic Angle Spinning techniques.

The most commonly used nuclei are
H
and
C
, although isotopes of many other elements, such as
F
,
P
, and
Si
, can be studied by high-field NMR spectroscopy as well. In order to interact with the magnetic field in the spectrometer, the nucleus must have an intrinsic angular momentum and nuclear magnetic dipole moment. This occurs when an isotope has a nonzero nuclear spin, meaning an odd number of protons and/or neutrons (see Isotope). Nuclides with even numbers of both have a total spin of zero and are therefore not NMR-active.

View the full Wikipedia page for Nuclear magnetic resonance
↑ Return to Menu