Prokaryotes in the context of "Mark Wheelis"

Play Trivia Questions online!

or

Skip to study material about Prokaryotes in the context of "Mark Wheelis"




⭐ Core Definition: Prokaryotes

A prokaryote (/prˈkærit, -ət/; less commonly spelled procaryote) is a microorganism whose usually single cell lacks a nucleus or other membrane-bound organelles. The word prokaryote comes from the Ancient Greek πρό (pró), meaning "before", and κάρυον (káruon), meaning "nut" or "kernel". In the earlier two-empire system, prokaryotes formed the empire Prokaryota. In the three-domain system, based upon molecular phylogenetics, prokaryotes are divided into two domains: Bacteria and Archaea. A third domain, Eukaryota, consists of organisms with cell nuclei.

Prokaryotes evolved before eukaryotes, and lack nuclei, mitochondria, and most of the other distinct organelles that characterize the eukaryotic cell. Some unicellular prokaryotes, such as cyanobacteria, form colonies held together by biofilms, and large colonies can create multilayered microbial mats. Prokaryotes are asexual, reproducing via binary fission. Horizontal gene transfer is also common.

↓ Menu

👉 Prokaryotes in the context of Mark Wheelis

Mark L. Wheelis is an American microbiologist. Wheelis is currently a professor in the College of Biological Sciences, University of California, Davis. Carl Woese and Otto Kandler with Wheelis wrote the important paper Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya that proposed a change from the Two-empire system of Prokaryotes and Eukaryotes to the Three-domain system of the domains Eukaryota, Bacteria and Archaea.

Wheelis's research interests include the history of biological warfare. He co-authored (with Larry Gonick) The Cartoon Guide to Genetics (1983). Wheelis provided the scientific knowledge and text, while Gonick contributed the illustrations and humor.

↓ Explore More Topics
In this Dossier

Prokaryotes in the context of Viroids

Viroids are small single-stranded, circular RNAs that are infectious pathogens. Unlike viruses, they have no protein coating. All known viroids are inhabitants of angiosperms (flowering plants), and most cause diseases, whose respective economic importance to humans varies widely. A recent metatranscriptomics study suggests that the host diversity of viroids and viroid-like elements is broader than previously thought and is not limited to plants, encompassing even the prokaryotes.

The first discoveries of viroids in the 1970s triggered the historically third major extension of the biosphere—to include smaller lifelike entities—after the discoveries in 1675 by Antonie van Leeuwenhoek (of the "subvisible" microorganisms) and in 1892–1898 by Dmitri Iosifovich Ivanovsky and Martinus Beijerinck (of the "submicroscopic" viruses). The unique properties of viroids have been recognized by the International Committee on Taxonomy of Viruses, in creating a new order of subviral agents.

↑ Return to Menu

Prokaryotes in the context of Cytosol

The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells (intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondrion into many compartments.

In the eukaryotic cell, the cytosol is surrounded by the cell membrane and is part of the cytoplasm, which also comprises the mitochondria, plastids, and other organelles (but not their internal fluids and structures); the cell nucleus is separate. The cytosol is thus a liquid matrix around the organelles. In prokaryotes, most of the chemical reactions of metabolism take place in the cytosol, while a few take place in membranes or in the periplasmic space. In eukaryotes, while many metabolic pathways still occur in the cytosol, others take place within organelles.

↑ Return to Menu

Prokaryotes in the context of Chromoplast

Chromoplasts are plastids, heterogeneous organelles responsible for pigment synthesis and storage in specific photosynthetic eukaryotes. It is thought (according to symbiogenesis) that like all other plastids including chloroplasts and leucoplasts they are descended from symbiotic prokaryotes.

↑ Return to Menu

Prokaryotes in the context of Eocyte hypothesis

The eocyte hypothesis in evolutionary biology proposes that the eukaryotes originated from a group of prokaryotes called eocytes (later classified as Thermoproteota, a group of archaea). After his team at the University of California, Los Angeles discovered eocytes in 1984, James A. Lake formulated the hypothesis as "eocyte tree" that proposed eukaryotes as part of archaea. Lake hypothesised the tree of life as having only two primary branches: prokaryotes, which include Bacteria and Archaea, and karyotes, that comprise Eukaryotes and eocytes. Parts of this early hypothesis were revived in a newer two-domain system of biological classification which named the primary domains as Archaea and Bacteria.

Lake's hypothesis was based on an analysis of the structural components of ribosomes. It was largely ignored, being overshadowed by the three-domain system which relied on more precise genetic analysis. In 1990, Carl Woese and his colleagues proposed that cellular life consists of three domainsEucarya, Bacteria, and Archaea – based on the ribosomal RNA sequences. The three-domain concept was widely accepted in genetics, and became the presumptive classification system for high-level taxonomy, and was promulgated in many textbooks.

↑ Return to Menu