Projective variety in the context of Twisted cubic


Projective variety in the context of Twisted cubic

Projective variety Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Projective variety in the context of "Twisted cubic"


⭐ Core Definition: Projective variety

In algebraic geometry, a projective variety is an algebraic variety that is a closed subvariety of a projective space. That is, it is the zero-locus in of some finite family of homogeneous polynomials that generate a prime ideal, the defining ideal of the variety.

A projective variety is a projective curve if its dimension is one; it is a projective surface if its dimension is two; it is a projective hypersurface if its dimension is one less than the dimension of the containing projective space; in this case it is the set of zeros of a single homogeneous polynomial.

↓ Menu
HINT:

👉 Projective variety in the context of Twisted cubic

In mathematics, a twisted cubic is a smooth, rational curve C of degree three in projective 3-space P. It is a fundamental example of a skew curve. It is essentially unique, up to projective transformation (the twisted cubic, therefore). In algebraic geometry, the twisted cubic is a simple example of a projective variety that is not linear or a hypersurface, in fact not a complete intersection. It is the three-dimensional case of the rational normal curve, and is the image of a Veronese map of degree three on the projective line.

↓ Explore More Topics
In this Dossier

Projective variety in the context of Degree (algebraic geometry)

In mathematics, the degree of an affine or projective variety of dimension n is the number of intersection points of the varietywith n hyperplanes in general position. For an algebraic set, the intersection points must be counted with their intersection multiplicity, because of the possibility of multiple components. For (irreducible) varieties, if one takes into account the multiplicities and, in the affine case, the points at infinity, the hypothesis of general position may be replaced by the much weaker condition that the intersection of the variety has the dimension zero (that is, consists of a finite number of points). This is a generalization of Bézout's theorem. (For a proof, see Hilbert series and Hilbert polynomial § Degree of a projective variety and Bézout's theorem.)

The degree is not an intrinsic property of the variety, as it depends on a specific embedding of the variety in an affine or projective space.

View the full Wikipedia page for Degree (algebraic geometry)
↑ Return to Menu

Projective variety in the context of Elliptic curve

In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is defined over a field K and describes points in K, the Cartesian product of K with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions (x, y) for:

for some coefficients a and b in K. The curve is required to be non-singular, which means that the curve has no cusps or self-intersections. (This is equivalent to the condition 4a + 27b ≠ 0, that is, being square-free in x.) It is always understood that the curve is really sitting in the projective plane, with the point O being the unique point at infinity. Many sources define an elliptic curve to be simply a curve given by an equation of this form. (When the coefficient field has characteristic 2 or 3, the above equation is not quite general enough to include all non-singular cubic curves; see § Elliptic curves over a general field below.)

View the full Wikipedia page for Elliptic curve
↑ Return to Menu

Projective variety in the context of Function of several complex variables

The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space , that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables (and analytic space), which the Mathematics Subject Classification has as a top-level heading.

As in complex analysis of functions of one variable, which is the case n = 1, the functions studied are holomorphic or complex analytic so that, locally, they are power series in the variables zi. Equivalently, they are locally uniform limits of polynomials; or locally square-integrable solutions to the n-dimensional Cauchy–Riemann equations. For one complex variable, every domain(), is the domain of holomorphy of some function, in other words every domain has a function for which it is the domain of holomorphy. For several complex variables, this is not the case; there exist domains () that are not the domain of holomorphy of any function, and so is not always the domain of holomorphy, so the domain of holomorphy is one of the themes in this field. Patching the local data of meromorphic functions, i.e. the problem of creating a global meromorphic function from zeros and poles, is called the Cousin problem. Also, the interesting phenomena that occur in several complex variables are fundamentally important to the study of compact complex manifolds and complex projective varieties () and has a different flavour to complex analytic geometry in or on Stein manifolds, these are much similar to study of algebraic varieties that is study of the algebraic geometry than complex analytic geometry.

View the full Wikipedia page for Function of several complex variables
↑ Return to Menu