Productivity (ecology) in the context of "Keystone species"

Play Trivia Questions online!

or

Skip to study material about Productivity (ecology) in the context of "Keystone species"

Ad spacer

⭐ Core Definition: Productivity (ecology)

In ecology, the term productivity refers to the rate of generation of biomass in an ecosystem, usually expressed in units of mass per volume (unit surface) per unit of time, such as grams per square metre per day (g m d). The unit of mass can relate to dry matter or to the mass of generated carbon. The productivity of autotrophs, such as plants, is called primary productivity, while the productivity of heterotrophs, such as animals, is called secondary productivity.

The productivity of an ecosystem is influenced by a wide range of factors, including nutrient availability, temperature, and water availability. Understanding ecological productivity is vital because it provides insights into how ecosystems function and the extent to which they can support life.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Productivity (ecology) in the context of Keystone species

A keystone species is a species that has a disproportionately large effect on its natural environment relative to its abundance. The concept was introduced in 1969 by the zoologist Robert T. Paine. Keystone species play a critical role in maintaining the structure of an ecological community, affecting many other organisms in an ecosystem and helping to determine the types and numbers of various other species in the community. Without keystone species, the ecosystem would be dramatically different or cease to exist altogether. Some keystone species, such as the wolf and lion, are also apex predators.

The role that a keystone species plays in its ecosystem is analogous to the role of a keystone in an arch. While the keystone is under the least pressure of any of the stones in an arch, the arch still collapses without it. Similarly, an ecosystem may experience a dramatic shift if a keystone species is removed, even though that species was a small part of the ecosystem by measures of biomass or productivity.It became a popular concept in conservation biology, alongside flagship and umbrella species. Although the concept is valued as a descriptor for particularly strong inter-species interactions, and has allowed easier communication between ecologists and conservation policy-makers, it has been criticized for oversimplifying complex ecological systems.

↓ Explore More Topics
In this Dossier

Productivity (ecology) in the context of Land management

Land management is the process of managing the use and development of land resources. Those resources are used for a variety of purposes for example agriculture, forestry, water resource management, human settlements and tourism. One aim of land management is to prevent or reverse land degradation. Another aim is to ensure water security by increasing soil moisture availability, decreasing surface runoff, and decreasing soil erosion. Unsustainable land managements leads to land being over- or misused which in turn degrades the land, reduces productivity and disrupts natural equilibriums.

Sustainable land management (SLM) is the set of practices and technologies that aim to integrate the management of land, water, and other environmental resources to meet human needs while ensuring long-term sustainability, ecosystem services, biodiversity, and livelihoods. Sustainable forest management is a sub-category of sustainable land management.

↑ Return to Menu

Productivity (ecology) in the context of Salt marsh

A salt marsh, saltmarsh or salting, also known as a coastal salt marsh or a tidal marsh, is a coastal ecosystem in the upper coastal intertidal zone between land and open saltwater or brackish water that is regularly flooded by the tides. It is dominated by dense stands of salt-tolerant plants such as herbs, grasses, or low shrubs. These plants are terrestrial in origin and are essential to the stability of the salt marsh in trapping and binding sediments. Salt marshes play a large role in the aquatic food web and the delivery of nutrients to coastal waters. They also support terrestrial animals and provide coastal protection.

Salt marshes have historically been endangered by poorly implemented coastal management practices, with land reclaimed for human uses or polluted by upstream agriculture or other industrial coastal uses. Additionally, sea level rise caused by climate change is endangering other marshes, through erosion and submersion of otherwise tidal marshes. However, recent acknowledgment by both environmentalists and larger society for the importance of saltwater marshes for biodiversity, ecological productivity and other ecosystem services, such as carbon sequestration, have led to an increase in salt marsh restoration and management since the 1980s.

↑ Return to Menu

Productivity (ecology) in the context of Alpine lake

An alpine lake is a high-altitude lake in a mountainous area, usually near or above the tree line, with extended periods of ice cover. These lakes are commonly glacial lakes formed from glacial activity (either current or in the past) but can also be formed from geological processes such as volcanic activity (volcanogenic lakes) or landslides (barrier lakes). Many alpine lakes that are fed from glacial meltwater have the characteristic bright turquoise green color as a result of glacial flour, suspended minerals derived from a glacier scouring the bedrock. When active glaciers are not supplying water to the lake, such as a majority of Rocky Mountains alpine lakes in the United States, the lakes may still be bright blue due to the lack of algal growth resulting from cold temperatures, lack of nutrient run-off from surrounding land, and lack of sediment input. The coloration and mountain locations of alpine lakes attract lots of recreational activity.

Alpine lakes are some of the most abundant types of lakes on Earth. In the Swiss Alps alone, there are nearly 1,000 alpine lakes, most of which formed after the Little Ice Age. As global temperatures continue to rise, more alpine lakes will be formed as glaciers recede and provide more run-off to surrounding areas, and existing lakes will see more biogeochemical changes and ecosystem shifts. An alpine lake's trophic state (i.e., level of biological productivity) progresses with age (e.g., low productivity after formation and increased productivity with vegetation and soil maturity in the surrounding watershed), but anthropogenic effects such as agriculture and climate change are rapidly affecting productivity levels in some lakes. These lakes are sensitive ecosystems and are particularly vulnerable to climate change due to the highly pronounced changes to ice and snow cover. Due to the importance of alpine lakes as sources of freshwater for agricultural and human use, the physical, chemical, and biological responses to climate change are being extensively studied.

↑ Return to Menu

Productivity (ecology) in the context of Nutrient cycle

A nutrient cycle (or ecological recycling) is the movement and exchange of inorganic and organic matter back into the production of matter. Energy flow is a unidirectional and noncyclic pathway, whereas the movement of mineral nutrients is cyclic. Mineral cycles include the carbon cycle, sulfur cycle, nitrogen cycle, water cycle, phosphorus cycle, oxygen cycle, among others that continually recycle along with other mineral nutrients into productive ecological nutrition.

↑ Return to Menu

Productivity (ecology) in the context of Flooded grasslands and savannas

Flooded grasslands and savannas is a terrestrial biome of the World Wide Fund for Nature (WWF) biogeographical system, consisting of large expanses or complexes of flooded grasslands. These areas support numerous plants and animals adapted to the unique hydrologic regimes and soil conditions. Large congregations of migratory and resident waterbirds may be found in these regions. The relative importance of these habitat types for these birds as well as more migratory animals typically varies, as the availability of water and productivity annually and seasonally shifts among complexes of smaller and larger wetlands throughout a region.

This habitat type is found in Asia, Africa, North America and South America. Some globally outstanding flooded savannas and grasslands occur in the Everglades, Pantanal, Lake Chad flooded savanna, Zambezian flooded grasslands, and the Sudd. The Everglades, with an area of 7,800 sq mi (20,000 km), are the world's largest rain-fed flooded grassland on a limestone substrate, and feature some 11,000 species of seed-bearing plants, 25 varieties of orchids, 300 bird species, and 150 fish species. The Pantanal, with an area of 187,818 km (72,517 sq mi), is the largest flooded grassland on Earth, supporting over 260 species of fish, 700 birds, 90 mammals, 160 reptiles, 45 amphibians, 1,000 butterflies, and 1,600 species of plants. The flooded savannas and grasslands are generally the largest complexes in each region.

↑ Return to Menu

Productivity (ecology) in the context of Soda lake

A soda lake or alkaline lake is a lake on the strongly basic side of neutrality, typically with a pH value between 9 and 12. They are characterized by high concentrations of carbonate salts, typically sodium carbonate (and related salt complexes), giving rise to their alkalinity. In addition, many soda lakes also contain high concentrations of sodium chloride and other dissolved salts, making them saline or hypersaline lakes as well. High pH and salinity often coincide, because of how soda lakes develop. The resulting hypersaline and highly alkaline soda lakes are considered some of the most extreme aquatic environments on Earth.

In spite of their apparent inhospitability, soda lakes are often highly productive ecosystems, compared to their (pH-neutral) freshwater counterparts. Gross primary production (photosynthesis) rates above 10 g C m day (grams of carbon per square meter per day), over 16 times the global average for lakes and streams (0.6 g C m day), have been measured. This makes them the most productive aquatic environments on Earth. An important reason for the high productivity is the virtually unlimited availability of dissolved carbon dioxide.

↑ Return to Menu