Pressure vessel in the context of "Storage tank"

Play Trivia Questions online!

or

Skip to study material about Pressure vessel in the context of "Storage tank"

Ad spacer

⭐ Core Definition: Pressure vessel

A pressure vessel is a container designed to hold gases or liquids at a pressure substantially different from the ambient pressure.

Construction methods and materials may be chosen to suit the pressure application, and will depend on the size of the vessel, the contents, working pressure, mass constraints, and the number of items required.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Pressure vessel in the context of Storage tank

Storage tanks are containers that hold liquids or compressed gases. The term can be used for reservoirs (artificial lakes and ponds), and for manufactured containers. The usage of the word "tank" for reservoirs is uncommon in American English but is moderately common in British English. In other countries, the term tends to refer only to artificial containers. In the U.S., storage tanks operate under no (or very little) pressure, distinguishing them from pressure vessels.

Tanks can be used to hold materials as diverse as milk, water, waste, petroleum, chemicals, and other hazardous materials, all while meeting industry standards and regulations. Storage tanks are available in many shapes: vertical and horizontal cylindrical; open top and closed top; flat bottom, cone bottom, slope bottom and dish bottom. Large tanks tend to be vertical cylindrical, with flat bottoms, and a fixed frangible or floating roof, or to have rounded corners transition from the vertical side wall to bottom profile, in order to withstand hydraulic hydrostatic pressure. Tanks built below ground level are sometimes used and referred to as underground storage tanks (USTs).

↓ Explore More Topics
In this Dossier

Pressure vessel in the context of Water supply network

A water supply network or water supply system is a system of engineered hydrologic and hydraulic components that provide water supply. A water supply system typically includes the following:

  1. A drainage basin (see water purification – sources of drinking water)
  2. A raw water collection point (above or below ground) where the water accumulates, such as a lake, a river, or groundwater from an underground aquifer. Raw water may be transferred using uncovered ground-level aqueducts, covered tunnels, or underground pipes to water purification facilities..
  3. Water purification facilities. Treated water is transferred using water pipes (usually underground).
  4. Water storage facilities such as reservoirs, water tanks, or water towers. Smaller water systems may store the water in cisterns or pressure vessels. Tall buildings may also need to store water locally in pressure vessels in order for the water to reach the upper floors.
  5. Additional water pressurizing components such as pumping stations may need to be situated at the outlet of underground or aboveground reservoirs or cisterns (if gravity flow is impractical).
  6. A pipe network for distribution of water to consumers (which may be private houses or industrial, commercial, or institution establishments) and other usage points (such as fire hydrants)
  7. Connections to the sewers (underground pipes, or aboveground ditches in some developing countries) are generally found downstream of the water consumers, but the sewer system is considered to be a separate system, rather than part of the water supply system.

Water supply networks are often run by public utilities of the water industry.

↑ Return to Menu

Pressure vessel in the context of Thermal power station

A thermal power station, also known as a thermal power plant, is a type of power station in which the heat energy generated from various fuel sources (e.g., coal, natural gas, nuclear fuel, etc.) is converted to electrical energy. The heat from the source is converted into mechanical energy using a thermodynamic power cycle (such as a Diesel cycle, Rankine cycle, Brayton cycle, etc.). The most common cycle involves a working fluid (often water) heated and boiled under high pressure in a pressure vessel to produce high-pressure steam. This high pressure-steam is then directed to a turbine, where it rotates the turbine's blades. The rotating turbine is mechanically connected to an electric generator which converts rotary motion into electricity. Fuels such as natural gas or oil can also be burnt directly in gas turbines (internal combustion), skipping the steam generation step. These plants can be of the open cycle or the more efficient combined cycle type.

The majority of the world's thermal power stations are driven by steam turbines, gas turbines, or a combination of the two. The efficiency of a thermal power station is determined by how effectively it converts heat energy into electrical energy, specifically the ratio of saleable electricity to the heating value of the fuel used. Different thermodynamic cycles have varying efficiencies, with the Rankine cycle generally being more efficient than the Otto or Diesel cycles. In the Rankine cycle, the low-pressure exhaust from the turbine enters a steam condenser where it is cooled to produce hot condensate which is recycled to the heating process to generate even more high pressure steam.

↑ Return to Menu

Pressure vessel in the context of Float (nautical)

A float (also called a pontoon) is an airtight hollow structure, similar to a pressure vessel, designed to provide buoyancy in water. Its principal applications are in watercraft hulls, aircraft floats, floating piers, aquaculture, pontoon bridges, and marine engineering applications such as salvage.

↑ Return to Menu

Pressure vessel in the context of Cabin pressure

Cabin pressurization is a process in which conditioned air is pumped into the cabin of an aircraft or spacecraft in order to create a safe and comfortable environment for humans flying at high altitudes. For aircraft, this air is usually bled off from the gas turbine engines at the compressor stage, and for spacecraft, it is carried in high-pressure, often cryogenic, tanks. The air is cooled, humidified, and mixed with recirculated air by one or more environmental control systems before it is distributed to the cabin.

The first experimental pressurization systems saw use during the 1920s and 1930s. In the 1940s, the first commercial aircraft with a pressurized cabin entered service. The practice would become widespread a decade later, particularly with the introduction of the British de Havilland Comet jetliner in 1949. However, two catastrophic failures in 1954 temporarily grounded the Comet worldwide. These failures were investigated and found to be caused by a combination of progressive metal fatigue and aircraft skin stresses caused from pressurization. Improved testing involved multiple full-scale pressurization cycle tests of the entire fuselage in a water tank, and the key engineering principles learned were applied to the design of subsequent jet airliners.

↑ Return to Menu

Pressure vessel in the context of Boiler

A boiler is a closed vessel in which fluid (generally water) is heated. The fluid does not necessarily boil. The heated or vaporized fluid exits the boiler for use in various processes or heating applications, including water heating, central heating, boiler-based power generation, cooking, and sanitation.

↑ Return to Menu

Pressure vessel in the context of Air blaster

An air blaster or air cannon is a de-clogging device with two main components: a pressure vessel (storing air pressure) and a triggering mechanism (high speed release of compressed air). They are permanently installed on silos, bins and hoppers for powdery materials, and are used to prevent caking and to allow maximum storage capacity. They are also used in the film and theatre industries to project simulated debris from explosions, and as surprise effects in Halloween haunts and other attractions.

Air blasters do not need any specific air supply. Available plant air is enough with a minimum of 4 bar air pressure (60 psi or 400 kPa), although 5 to 6 bar are preferred for better results (75 to 90 psi). The average air consumption is moderate, and depends on the number of firings per hour, size of the pressure vessel, and number of blasters installed. For instance, a 50-liter air blaster consumes 0.60 normal cubic metres per hour at 6 bar air pressure (90 psi or 600 kPa), with 2 firings per hour.

↑ Return to Menu