Pressure solution in the context of "Compaction (geology)"

Play Trivia Questions online!

or

Skip to study material about Pressure solution in the context of "Compaction (geology)"

Ad spacer

⭐ Core Definition: Pressure solution

In structural geology and diagenesis, pressure solution or pressure dissolution is a deformation mechanism that involves the dissolution of minerals at grain-to-grain contacts into an aqueous pore fluid in areas of relatively high stress and either deposition in regions of relatively low stress within the same rock or their complete removal from the rock within the fluid. It is an example of diffusive mass transfer.

The detailed kinetics of the process was reviewed by Rutter (1976), and since then such kinetics has been used inmany applications in earth sciences.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Pressure solution in the context of Compaction (geology)

In sedimentology, compaction is the process by which a sediment progressively loses its porosity due to the effects of pressure from loading. This forms part of the process of lithification. When a layer of sediment is originally deposited, it contains an open framework of particles with the pore space being usually filled with water. As more sediment is deposited above the layer, the effect of the increased loading is to increase the particle-to-particle stresses resulting in porosity reduction primarily through a more efficient packing of the particles and to a lesser extent through elastic compression and pressure solution. The initial porosity of a sediment depends on its lithology. Mudstones start with porosities of >60%, sandstones typically ~40% and carbonates sometimes as high as 70%. Results from hydrocarbon exploration wells show clear porosity reduction trends with depth. Compaction trend estimation and decompaction process are useful for analyzing numerical basin evolution (e.g., subsidence) and evaluating hydrocarbon reservoirs and geological storages.

In sediments compacted under self-weight, especially in sedimentary basins, the porosity profiles often show an exponential decrease, called Athy's law as first shown by Athy in 1930. A mathematical analytical solution was obtained by Fowler and Yang to show the theoretical basis for Athy's law. This process can be easily observed in experiments and used as a good approximation to many real data.

↓ Explore More Topics
In this Dossier

Pressure solution in the context of Slaty cleavage

Cleavage, in structural geology and petrology, describes a type of planar rock feature that develops as a result of deformation and metamorphism. The degree of deformation and metamorphism along with rock type determines the kind of cleavage feature that develops. Generally, these structures are formed in fine grained rocks composed of minerals affected by pressure solution.

Cleavage is a type of rock foliation, a fabric element that describes the way planar features develop in a rock. Foliation is separated into two groups: primary and secondary. Primary deals with igneous and sedimentary rocks, while secondary deals with rocks that undergo metamorphism as a result of deformation. Cleavage is a type of secondary foliation associated with fine grained rocks. For coarser grained rocks, schistosity is used to describe secondary foliation.

↑ Return to Menu