Power of two in the context of "Pierre Wantzel"

Play Trivia Questions online!

or

Skip to study material about Power of two in the context of "Pierre Wantzel"




⭐ Core Definition: Power of two

A power of two is a number of the form 2 where n is an integer, that is, the result of exponentiation with number two as the base and integer n as the exponent. In the fast-growing hierarchy, 2 is exactly equal to . In the Hardy hierarchy, 2 is exactly equal to .

Powers of two with non-negative exponents are integers: 2 = 1, 2 = 2, and 2 is two multiplied by itself n times. The first ten powers of 2 for non-negative values of n are:

↓ Menu

👉 Power of two in the context of Pierre Wantzel

Pierre Laurent Wantzel (5 June 1814 – 21 May 1848) was a French mathematician who proved that several ancient geometric problems were impossible to solve using only compass and straightedge.

In a paper from 1837, Wantzel proved that the problems of doubling the cube and trisecting the angle are impossible to solve if one uses only a compass and straightedge. In the same paper he also solved the problem of determining which regular polygons are constructible: a regular polygon is constructible if and only if the number of its sides is the product of a power of two and any number of distinct Fermat primes (i.e., the sufficient conditions given by Carl Friedrich Gauss are also necessary).

↓ Explore More Topics
In this Dossier

Power of two in the context of Mersenne number

In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form Mn = 2 − 1 for some integer n. They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17th century. If n is a composite number then so is 2 − 1. Therefore, an equivalent definition of the Mersenne primes is that they are the prime numbers of the form Mp = 2 − 1 for some prime p.

The exponents n which give Mersenne primes are 2, 3, 5, 7, 13, 17, 19, 31, ... (sequence A000043 in the OEIS) and the resulting Mersenne primes are 3, 7, 31, 127, 8191, 131071, 524287, 2147483647, ... (sequence A000668 in the OEIS).

↑ Return to Menu

Power of two in the context of Half-integer

In mathematics, a half-integer is a number of the form where is an integer. For example, are all half-integers. The name "half-integer" is perhaps misleading, as each integer is itself half of the integer . A name such as "integer-plus-half" may be more accurate, but while not literally true, "half integer" is the conventional term. Half-integers occur frequently enough in mathematics and in quantum mechanics that a distinct term is convenient.

Note that halving an integer does not always produce a half-integer; this is only true for odd integers. For this reason, half-integers are also sometimes called half-odd-integers. Half-integers are a subset of the dyadic rationals (numbers produced by dividing an integer by a power of two).

↑ Return to Menu

Power of two in the context of Five-limit tuning

Five-limit tuning, 5-limit tuning, or 5-prime-limit tuning (not to be confused with 5-odd-limit tuning), is any system for tuning a musical instrument that obtains the frequency of each note by multiplying the frequency of a given reference note (the base note) by products of integer powers of 2, 3, or 5 (prime numbers limited to 5 or lower), such as 2·3·5 = 15/8.

Powers of 2 represent intervallic movements by octaves. Powers of 3 represent movements by intervals of perfect fifths (plus one octave, which can be removed by multiplying by 1/2, i.e., 2). Powers of 5 represent intervals of major thirds (plus two octaves, removable by multiplying by 1/4, i.e., 2). Thus, 5-limit tunings are constructed entirely from stacking of three basic purely-tuned intervals (octaves, thirds and fifths). Since the perception of consonance seems related to low numbers in the harmonic series, and 5-limit tuning relies on the three lowest primes, 5-limit tuning should be capable of producing very consonant harmonies. Hence, 5-limit tuning is considered a method for obtaining just intonation.

↑ Return to Menu

Power of two in the context of Geometric progression

A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2.

Examples of a geometric sequence are powers r of a fixed non-zero number r, such as 2 and 3. The general form of a geometric sequence is

↑ Return to Menu

Power of two in the context of Dyadic rational

In mathematics, a dyadic rational or binary rational is a number that can be expressed as a fraction whose denominator is a power of two. For example, 1/2, 3/2, and 3/8 are dyadic rationals, but 1/3 is not. These numbers are important in computer science because they are the only ones with finite binary representations. Dyadic rationals also have applications in weights and measures, musical time signatures, and early mathematics education. They can accurately approximate any real number.

The sum, difference, or product of any two dyadic rational numbers is another dyadic rational number, given by a simple formula. However, division of one dyadic rational number by another does not always produce a dyadic rational result. Mathematically, this means that the dyadic rational numbers form a ring, lying between the ring of integers and the field of rational numbers. This ring may be denoted .

↑ Return to Menu