Power generation in the context of Nuclear fission


Power generation in the context of Nuclear fission

Power generation Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Power generation in the context of "Nuclear fission"


⭐ Core Definition: Power generation

Electricity generation is the process of generating electric power from sources of primary energy. For utilities in the electric power industry, it is the stage prior to its delivery (transmission, distribution, etc.) to end users or its storage, using for example, the pumped-storage method.

Consumable electricity is not freely available in nature, so it must be "produced", transforming other forms of energy to electricity. Production is carried out in power stations, also called "power plants". Electricity is most often generated at a power plant by electromechanical generators, primarily driven by heat engines fueled by combustion or nuclear fission, but also by other means such as the kinetic energy of flowing water and wind. Other energy sources include solar photovoltaics and geothermal power. There are exotic and speculative methods to recover energy, such as proposed fusion reactor designs which aim to directly extract energy from intense magnetic fields generated by fast-moving charged particles generated by the fusion reaction (see magnetohydrodynamics).

↓ Menu
HINT:

In this Dossier

Power generation in the context of Irish Sea

The Irish Sea is a 46,007 km (17,763 sq mi) body of water that separates the islands of Ireland and Great Britain. It is linked to the Celtic Sea in the south by St George's Channel and to the Inner Seas off the West Coast of Scotland in the north by the North Channel. Anglesey, North Wales, is the largest island in the Irish Sea, followed by the Isle of Man. The term Manx Sea may occasionally be encountered (Welsh: Môr Manaw, Irish: Muir Meann Manx: Mooir Vannin, Scottish Gaelic: Muir Mhanainn).

On its shoreline are Scotland to the north, England to the east, Wales to the southeast, Northern Ireland and the Republic of Ireland to the west. The Irish Sea is of significant economic importance to regional trade, shipping and transport, as well as fishing and power generation in the form of wind power and nuclear power plants. Annual traffic between Great Britain and Ireland is over 12 million passengers and 17 million tonnes (17,000,000 long tons; 19,000,000 short tons) of traded goods.

View the full Wikipedia page for Irish Sea
↑ Return to Menu

Power generation in the context of Energy transmission

Electric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines that facilitate this movement form a transmission network. This is distinct from the local wiring between high-voltage substations and customers, which is typically referred to as electric power distribution. The combined transmission and distribution network is part of electricity delivery, known as the electrical grid.

Efficient long-distance transmission of electric power requires high voltages. This reduces the losses produced by strong currents. Transmission lines use either alternating current (AC) or direct current (DC). The voltage level is changed with transformers. The voltage is stepped up for transmission, then reduced for local distribution.

View the full Wikipedia page for Energy transmission
↑ Return to Menu

Power generation in the context of Charles Algernon Parsons

Sir Charles Algernon Parsons (13 June 1854 – 11 February 1931) was an Anglo-Irish mechanical engineer and inventor who designed the modern steam turbine in 1884. His invention revolutionised marine propulsion, and he was also the founder of C. A. Parsons and Company. He worked as an engineer on dynamo and turbine design, and power generation, with great influence in the naval and electrical engineering fields. He also helped develop optical equipment for searchlights and telescopes. Parsons received the Franklin Medal in 1920, the Faraday Medal in 1923, and the Copley Medal in 1928 for his work, as well as the Engineering Heritage Awards posthumously in 1995.

His inventions and developments were used in many appliances during the early 20th century, including both naval and optical devices. He was elected to the Royal Society in 1898, and he served as the president of the British Association between 1916 and 1919. For his lasting contributions, Parsons was knighted in 1911, and he became a member of the Order of Merit in 1927. He additionally received the Bessemer Gold Medal in 1929.

View the full Wikipedia page for Charles Algernon Parsons
↑ Return to Menu

Power generation in the context of Low-carbon power

Low-carbon electricity or low-carbon power is electricity produced with substantially lower greenhouse gas emissions over the entire lifecycle than power generation using fossil fuels. The energy transition to low-carbon power is one of the most important actions required to limit climate change.

Low carbon power generation sources include wind power, solar power, nuclear power and most hydropower. The term largely excludes conventional fossil fuel plant sources, and is only used to describe a particular subset of operating fossil fuel power systems, specifically, those that are successfully coupled with a flue gas carbon capture and storage (CCS) system. Globally almost 40% of electricity generation came from low-carbon sources in 2020: about 10% being nuclear power, almost 10% wind and solar, and around 20% hydropower and other renewables. Very little low-carbon power comes from fossil sources, mostly due to the cost of CCS technology.

View the full Wikipedia page for Low-carbon power
↑ Return to Menu

Power generation in the context of BP

BP p.l.c. (formerly The British Petroleum Company p.l.c. and BP Amoco p.l.c.; stylised in all lowercase) is a British multinational oil and gas company headquartered in London, England. It is one of the oil and gas "supermajors" and one of the world's largest companies measured by revenues and profits.

It is a vertically integrated company operating in all areas of the oil and gas industry, including exploration and extraction, refining, distribution and marketing, power generation, and trading.

View the full Wikipedia page for BP
↑ Return to Menu

Power generation in the context of Sonic soot blowers

Sonic soot blowers offer a cost-effective and non-destructive means of preventing ash and particulate build-up within the power generation industry. They use high energy – low frequency sound waves that provide 360° particulate de-bonding and at a speed in excess of 344 metres per second. Because they employ non-destructive sound waves, unlike steam soot blowers they eliminate any concerns over corrosion, erosion or mechanical damage and do not produce an effluent stream.

The sonic soot blower operates in the same manner, the ‘base tone’ being produced by passing compressed air into a wave generator which houses a titanium diaphragm causing it to oscillate rapidly. This ‘base tone’ is then converted into a range of selected frequencies ranging from 350 Hz down to 60 Hz by the design and length of the horn section, producing the desired sound frequency at a sound level approaching 200 dB. The sonic soot blower is usually ‘sounded’ for a few seconds at intervals of between 3 and 10 minutes. This ‘sounding’ pattern is normally controlled via the plant’s PLC. However, it may also be operated by such means as a SCADA system, individual timers on each solenoid valve or via a manual ball valve.

View the full Wikipedia page for Sonic soot blowers
↑ Return to Menu

Power generation in the context of Islanding

Islanding is the intentional or unintentional division of an interconnected power grid into individual disconnected regions with their own power generation.

Intentional islanding is often performed as a defence in depth to mitigate a cascading blackout. If one island collapses, it will not take neighboring islands with it. For example, nuclear power plants have safety-critical cooling systems that are typically powered from the general grid. The coolant loops typically lie on a separate circuit that can also operate off reactor power or emergency diesel generators if the grid collapses.

View the full Wikipedia page for Islanding
↑ Return to Menu

Power generation in the context of Distributed generation

Distributed generation, also distributed energy, on-site generation (OSG), or district/decentralized energy, is electrical generation and storage performed by a variety of small, grid-connected or distribution system-connected devices referred to as distributed energy resources (DER).

Conventional power stations, such as coal-fired, gas, and nuclear powered plants, as well as hydroelectric dams and large-scale solar power stations, are centralized and often require electric energy to be transmitted over long distances. By contrast, DER systems are decentralized, modular, and more flexible technologies that are located close to the load they serve, albeit having capacities of only 10 megawatts (MW) or less. These systems can comprise multiple generation and storage components; in this instance, they are referred to as hybrid power systems.

View the full Wikipedia page for Distributed generation
↑ Return to Menu

Power generation in the context of Energy service company

An energy service company (ESCO) is a company that provides a broad range of energy solutions including designs and implementation of energy savings projects, retrofitting, energy conservation, energy infrastructure outsourcing, power generation, energy supply, and risk management.

A newer breed of ESCO includes innovative financing methods, such as off-balance sheet mechanisms, a range of applicable equipment configured in such a way that reduces the energy cost of a building. The ESCO starts by performing an analysis of the property, designs an energy efficient solution, installs the required elements, and maintains the system to ensure energy savings during the payback period. The savings in energy costs are often used to pay back the capital investment of the project over a five to twenty years period or reinvested into the building to allow the capital upgrades that may otherwise be unfeasible. If the project does not provide returns on the investment, the ESCO is often responsible to pay the difference.

View the full Wikipedia page for Energy service company
↑ Return to Menu

Power generation in the context of Diesel cycle

The Diesel cycle is a combustion process of a reciprocating internal combustion engine. In it, fuel is ignited by heat generated during the compression of air in the combustion chamber, into which fuel is then injected. This is in contrast to igniting the fuel-air mixture with a spark plug as in the Otto cycle (four-stroke/petrol) engine. Diesel engines are used in aircraft, automobiles, power generation, diesel–electric locomotives, and both surface ships and submarines.

The Diesel cycle is assumed to have constant pressure during the initial part of the combustion phase ( to in the diagram, below). This is an idealized mathematical model: real physical diesels do have an increase in pressure during this period, but it is less pronounced than in the Otto cycle. In contrast, the idealized Otto cycle of a gasoline engine approximates a constant volume process during that phase.

View the full Wikipedia page for Diesel cycle
↑ Return to Menu

Power generation in the context of Pratt & Whitney

Pratt & Whitney is an American aerospace manufacturer with global service operations. It is a subsidiary of RTX Corporation (formerly Raytheon Technologies). Pratt & Whitney's aircraft engines are widely used in both civil aviation (especially airliners) and military aviation. Its headquarters are in East Hartford, Connecticut. The company is the world's second largest commercial aircraft engine manufacturer, with a 35% market share as of 2020. In addition to aircraft engines, Pratt & Whitney manufactures gas turbine engines for industrial use, marine propulsion, and power generation. In 2017, the company reported that it supported more than 11,000 customers in 180 countries around the world.

View the full Wikipedia page for Pratt & Whitney
↑ Return to Menu