Power (physics) in the context of Electrical power


Power (physics) in the context of Electrical power

Power (physics) Study page number 1 of 5

Play TriviaQuestions Online!

or

Skip to study material about Power (physics) in the context of "Electrical power"


⭐ Core Definition: Power (physics)

Power is the amount of energy transferred or converted per unit time. In the International System of Units, the unit of power is the watt, equal to one joule per second. Power is a scalar quantity.

The output power of a motor is the product of the torque that the motor generates and the angular velocity of its output shaft. Likewise, the power dissipated in an electrical element of a circuit is the product of the current flowing through the element and of the voltage across the element.

↓ Menu
HINT:

In this Dossier

Power (physics) in the context of Machine

A machine is a thermodynamic system that uses power to apply forces and control movement to perform an action. The term is commonly applied to artificial devices, such as those employing engines or motors, but also to natural biological macromolecules, such as molecular machines. Machines can be driven by animals and people, by natural forces such as wind and water, and by chemical, thermal, or electrical power, and include a system of mechanisms that shape the actuator input to achieve a specific application of output forces and movement. They can also include computers and sensors that monitor performance and plan movement, often called mechanical systems.

Renaissance natural philosophers identified six simple machines which were the elementary devices that put a load into motion, and calculated the ratio of output force to input force, known today as mechanical advantage.

View the full Wikipedia page for Machine
↑ Return to Menu

Power (physics) in the context of Solar irradiance

Solar irradiance is the power per unit area (surface power density) received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. Solar irradiance is measured in watts per square metre (W/m) in SI units.

Solar irradiance is often integrated over a given time period in order to report the radiant energy emitted into the surrounding environment (joule per square metre, J/m) during that time period. This integrated solar irradiance is called solar irradiation, solar radiation, solar exposure, solar insolation, or insolation.

View the full Wikipedia page for Solar irradiance
↑ Return to Menu

Power (physics) in the context of Joule heating

Joule heating (also known as resistive heating, resistance heating, or Ohmic heating) is the process by which the passage of an electric current through a conductor produces heat.

Joule's first law (also just Joule's law), also known in countries of the former USSR as the Joule–Lenz law, states that the power of heating generated by an electrical conductor equals the product of its resistance and the square of the current. Joule heating affects the whole electric conductor, unlike the Peltier effect which transfers heat from one electrical junction to another.

View the full Wikipedia page for Joule heating
↑ Return to Menu

Power (physics) in the context of Spectral power distribution

In radiometry, photometry, and color science, a spectral power distribution (SPD) measurement describes the power per unit area per unit wavelength of an illumination (radiant exitance). More generally, the term spectral power distribution can refer to the concentration, as a function of wavelength, of any radiometric or photometric quantity (e.g. radiant energy, radiant flux, radiant intensity, radiance, irradiance, radiant exitance, radiosity, luminance, luminous flux, luminous intensity, illuminance, luminous emittance).

Knowledge of the SPD is crucial for optical-sensor system applications. Optical properties such as transmittance, reflectivity, and absorbance as well as the sensor response are typically dependent on the incident wavelength.

View the full Wikipedia page for Spectral power distribution
↑ Return to Menu

Power (physics) in the context of Intensity (physics)

In physics and many other areas of science and engineering the intensity or flux of radiant energy is the power transferred per unit area, where the area is measured on the plane perpendicular to the direction of propagation of the energy. In the SI system, it has units watts per square metre (W/m), or kgs in base units. Intensity is used most frequently with waves such as acoustic waves (sound), matter waves such as electrons in electron microscopes, and electromagnetic waves such as light or radio waves, in which case the average power transfer over one period of the wave is used. Intensity can be applied to other circumstances where energy is transferred. For example, one could calculate the intensity of the kinetic energy carried by drops of water from a garden sprinkler.

The word "intensity" as used here is not synonymous with "strength", "amplitude", "magnitude", or "level", as it sometimes is in colloquial speech.

View the full Wikipedia page for Intensity (physics)
↑ Return to Menu

Power (physics) in the context of Wave power

Wave power is the capture of energy of wind waves to do useful work – for example, electricity generation, desalination, or pumping water. A machine that exploits wave power is a wave energy converter (WEC).

Waves are generated primarily by wind passing over the sea's surface and also by tidal forces, temperature variations, and other factors. As long as the waves propagate slower than the wind speed just above, energy is transferred from the wind to the waves. Air pressure differences between the windward and leeward sides of a wave crest and surface friction from the wind cause shear stress and wave growth.

View the full Wikipedia page for Wave power
↑ Return to Menu

Power (physics) in the context of Human power

Human power is the rate of work or energy that is produced from the human body. It can also refer to the power (rate of work per time) of a human. Power comes primarily from muscles, but body heat is also used to do work like warming shelters, food, or other humans.

World records of power performance by humans are of interest to work planners and work-process engineers. The average level of human power that can be maintained over a certain duration of time⁠ is interesting to engineers designing work operations in industry.

View the full Wikipedia page for Human power
↑ Return to Menu

Power (physics) in the context of Motor fuel

A motor fuel is a fuel that is used to provide power to the engine (motor) of vehicles — typically a heat engine that produces thermal energy via oxidative combustion of liquid or gaseous fuel and then converts the heat into mechanical energy through reciprocating pistons or gas turbines.

Currently, the majority of motor vehicles, powerboats and light aircraft worldwide are propelled by internal combustion engines powered by petroleum-based hydrocarbon fossil fuels such as gasoline, diesel or autogas, while larger ships and aircraft use marine diesel oil and kerosene to power gas/steam turbine, turboprop and jet engines. Other fuel types include ethanol, biodiesel, biogasoline, propane, compressed natural gas (CNG) and hydrogen (either using fuel cells or hydrogen combustion). There are also cars that use a hybrid drivetrain of different power sources. The use of synthetic alternative fuels (especially renewable biofuels) is increasing, especially in Europe, as well as increasing mass adoption of battery electric vehicles (which are powered by battery-stored electricity instead of fuels).

View the full Wikipedia page for Motor fuel
↑ Return to Menu

Power (physics) in the context of Hydraulic

Hydraulics (from Ancient Greek ὕδωρ (húdōr) 'water' and αὐλός (aulós) 'pipe') is a technology and applied science using engineering, chemistry, and other sciences involving the mechanical properties and use of liquids. At a very basic level, hydraulics is the liquid counterpart of pneumatics, which concerns gases. Fluid mechanics provides the theoretical foundation for hydraulics, which focuses on applied engineering using the properties of fluids. In its fluid power applications, hydraulics is used for the generation, control, and transmission of power by the use of pressurized liquids. Hydraulic topics range through some parts of science and most of engineering modules, and they cover concepts such as pipe flow, dam design, fluidics, and fluid control circuitry. The principles of hydraulics are naturally in use in the human body within the vascular system and erectile tissue.

Free surface hydraulics is the branch of hydraulics dealing with free surface flow, such as occurring in rivers, canals, lakes, estuaries, and seas. Its sub-field open-channel flow studies the flow in open channels.

View the full Wikipedia page for Hydraulic
↑ Return to Menu

Power (physics) in the context of Luminous intensity

In photometry, luminous intensity is a measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle, based on the luminosity function, a standardized model of the sensitivity of the human eye. The SI unit of luminous intensity is the candela (cd), an SI base unit.

View the full Wikipedia page for Luminous intensity
↑ Return to Menu

Power (physics) in the context of Electric power

Electric power is the rate of transfer of electrical energy within a circuit. Its SI unit is the watt, the general unit of power, defined as one joule per second. Standard prefixes apply to watts as with other SI units: thousands, millions and billions of watts are called kilowatts, megawatts and gigawatts respectively.

In common parlance, electric power is the production and delivery of electrical energy, an essential public utility in much of the world. Electric power is usually produced by electric generators, but can also be supplied by sources such as electric batteries. It is usually supplied to businesses and homes (as domestic mains electricity) by the electric power industry through an electrical grid.

View the full Wikipedia page for Electric power
↑ Return to Menu

Power (physics) in the context of Megawatt

The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m⋅s. It is used to quantify the rate of energy transfer. The watt is named in honor of James Watt (1736–1819), an 18th-century Scottish inventor, mechanical engineer, and chemist who improved the Newcomen engine with his own steam engine in 1776, which became fundamental for the Industrial Revolution.

View the full Wikipedia page for Megawatt
↑ Return to Menu

Power (physics) in the context of Surface power density

↑ Return to Menu