Polyunsaturated fatty acid in the context of Resolvin


Polyunsaturated fatty acid in the context of Resolvin

⭐ Core Definition: Polyunsaturated fatty acid

In biochemistry and nutrition, a polyunsaturated fat is a fat that contains a polyunsaturated fatty acid (abbreviated PUFA), which is a subclass of fatty acid characterized by a backbone with two or more carbon–carbon double bonds.Some polyunsaturated fatty acids are essentials. Polyunsaturated fatty acids are precursors to and are derived from polyunsaturated fats, which include drying oils.

↓ Menu
HINT:

👉 Polyunsaturated fatty acid in the context of Resolvin

Resolvins are specialized pro-resolving mediators (SPMs) derived from omega-3 fatty acids, primarily eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), as well as from two isomers of docosapentaenoic acid (DPA), one omega-3 and one omega-6 fatty acid. As autacoids similar to hormones acting on local tissues, resolvins are under preliminary research for their involvement in promoting restoration of normal cellular function following the inflammation that occurs after tissue injury. Resolvins belong to a class of polyunsaturated fatty acid (PUFA) metabolites termed specialized proresolving mediators (SPMs).

↓ Explore More Topics
In this Dossier

Polyunsaturated fatty acid in the context of Alpha-linolenic acid

α-Linolenic acid, also known as alpha-linolenic acid (ALA) (from Greek alpha denoting "first" and linon meaning flax), is an n−3, or omega-3, essential fatty acid. ALA is found in many seeds and oils, including flaxseed, walnuts, chia, hemp, and many common vegetable oils.

In terms of its structure, it is named all-cis-9,12,15-octadecatrienoic acid. In physiological literature, it is listed by its lipid number, 18:3 (n−3). It is a carboxylic acid with an 18-carbon chain and three cis double bonds. The first double bond is located at the third carbon from the methyl end of the fatty acid chain, known as the n end. Thus, α-linolenic acid is a polyunsaturated n−3 (omega-3) fatty acid. It is a regioisomer of gamma-linolenic acid (GLA), an 18:3 (n−6) fatty acid (i.e., a polyunsaturated omega-6 fatty acid with three double bonds).

View the full Wikipedia page for Alpha-linolenic acid
↑ Return to Menu

Polyunsaturated fatty acid in the context of Eicosanoid

Eicosanoids are signaling molecules made by the enzymatic or non-enzymatic oxidation of arachidonic acid or other polyunsaturated fatty acids (PUFAs) that are, similar to arachidonic acid, around 20 carbon units in length. Eicosanoids are a sub-category of oxylipins, i.e. oxidized fatty acids of diverse carbon units in length, and are distinguished from other oxylipins by their overwhelming importance as cell signaling molecules. Eicosanoids function in diverse physiological systems and pathological processes such as: mounting or inhibiting inflammation, allergy, fever and other immune responses; regulating the abortion of pregnancy and normal childbirth; contributing to the perception of pain; regulating cell growth; controlling blood pressure; and modulating the regional flow of blood to tissues. In performing these roles, eicosanoids most often act as autocrine signaling agents to impact their cells of origin or as paracrine signaling agents to impact cells in the proximity of their cells of origin. Some eicosanoids, such as prostaglandins, may also have endocrine roles as hormones to influence the function of distant cells.

There are multiple subfamilies of eicosanoids, including most prominently the prostaglandins, thromboxanes, leukotrienes, lipoxins, resolvins, and eoxins. For each subfamily, there is the potential to have at least 4 separate series of metabolites, two series derived from the ω−6 PUFAs arachidonic and dihomo-gamma-linolenic acids, one series derived from the ω−3 PUFA eicosapentaenoic acid, and one series derived from the ω−9 PUFA mead acid. This subfamily distinction is important. Mammals, including humans, are unable to convert ω−6 into ω−3 PUFA. In consequence, tissue levels of the ω−6 and ω−3 PUFAs and their corresponding eicosanoid metabolites link directly to the amount of dietary ω−6 versus ω−3 PUFAs consumed. Since certain of the ω−6 and ω−3 PUFA series of metabolites have almost diametrically opposing physiological and pathological activities, it has often been suggested that the deleterious consequences associated with the consumption of ω−6 PUFA-rich diets reflects excessive production and activities of ω−6 PUFA-derived eicosanoids, while the beneficial effects associated with the consumption of ω−3 PUFA-rich diets reflect the excessive production and activities of ω−3 PUFA-derived eicosanoids. In this view, the opposing effects of ω−6 PUFA-derived and ω−3 PUFA-derived eicosanoids on key target cells underlie the detrimental and beneficial effects of ω−6 and ω−3 PUFA-rich diets on inflammation and allergy reactions, atherosclerosis, hypertension, cancer growth, and a host of other processes.

View the full Wikipedia page for Eicosanoid
↑ Return to Menu

Polyunsaturated fatty acid in the context of Eicosapentaenoic acid

Eicosapentaenoic acid (EPA; also icosapentaenoic acid) is an omega−3 fatty acid. In physiological literature, it is given the name 20:5(n−3). It also has the trivial name timnodonic acid. In chemical structure, EPA is a carboxylic acid with a 20-carbon chain and five cis double bonds; the first double bond is located at the third carbon from the omega end.

EPA is a polyunsaturated fatty acid (PUFA) that acts as a precursor for prostaglandin-3 (which inhibits platelet aggregation), thromboxane-3, and leukotriene-5 eicosanoids. EPA is both a precursor and the hydrolytic breakdown product of eicosapentaenoyl ethanolamide (EPEA: C22H35NO2; 20:5,n−3). Although studies of fish oil supplements, which contain both docosahexaenoic acid (DHA) and EPA, have failed to support claims of preventing heart attacks or strokes, a recent multi-year study of Vascepa (ethyl eicosapentaenoate, the ethyl ester of the free fatty acid), a prescription drug containing only EPA, was shown to reduce heart attack, stroke, and cardiovascular death by 25% relative to a placebo in those with statin-resistant hypertriglyceridemia.

View the full Wikipedia page for Eicosapentaenoic acid
↑ Return to Menu

Polyunsaturated fatty acid in the context of Oxylipin

Oxylipins constitute a family of oxygenated natural products which are formed from fatty acids by pathways involving at least one step of dioxygen-dependent oxidation. These small polar lipid compounds are metabolites of polyunsaturated fatty acids (PUFAs) including omega-3 fatty acids and omega-6 fatty acids. Oxylipins are formed by enzymatic or non-enzymatic oxidation of PUFAs.

In animal species, four main pathways of oxylipin production prevail: lipoxygenases (LOXs) pathway, cyklooxygenases (COXs) route, cytochrome P450 (CYPs) pathway, and reactive oxygen species (ROS) route. These pathways result in formation of many different oxylipin molecules which are important for number of processes in living organisms. The processes include inflammation, blood flow, energy metabolism, cellular life, cell signaling, or muscle contractions. Oxylipins have both pro- and anti-inflammatory roles.

View the full Wikipedia page for Oxylipin
↑ Return to Menu

Polyunsaturated fatty acid in the context of Lipoxin

A lipoxin (LX or Lx), an acronym for lipoxygenase interaction product, is a bioactive autacoid metabolite of arachidonic acid made by various cell types. They are categorized as nonclassic eicosanoids and members of the specialized pro-resolving mediator (SPM) family of polyunsaturated fatty acid (PUFA) metabolites. Like other SPMs, LXs form during an inflammatory response and act to resolve it. The first lipoxins identified were lipoxin A4 (LXA4) and lipoxin B4 (LXB4), followed by their respective epimers, the epi-lipoxins 15-epi-LXA4 and 15-epi-LXB4.

View the full Wikipedia page for Lipoxin
↑ Return to Menu

Polyunsaturated fatty acid in the context of Gynoid fat distribution

Gynoid fat is the body fat that forms around the lower body, specifically the hips, thighs and buttocks.

Gynoid fat in females is used to provide nourishment for offspring, and is often referred to as 'reproductive fat'. This is because it contains long-chain polyunsaturated fatty acids (PUFAs), which are important in the development of fetuses.

View the full Wikipedia page for Gynoid fat distribution
↑ Return to Menu