Polypropylene in the context of "Water tank"

Play Trivia Questions online!

or

Skip to study material about Polypropylene in the context of "Water tank"

Ad spacer

⭐ Core Definition: Polypropylene

Polypropylene (PP), also known as polypropene, is a thermoplastic polymer used in a wide variety of applications. It is produced via chain-growth polymerization from the monomer propylene.

Polypropylene belongs to the group of polyolefins and is partially crystalline and non-polar. Its properties are similar to polyethylene, but it is slightly harder and more heat-resistant. It is a white, mechanically rugged material and has a high chemical resistance.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Polypropylene in the context of Water tank

A water tank is a container for storing water, for many applications, drinking water, irrigation, fire suppression, farming, both for plants and livestock, chemical manufacturing, food preparation as well as many other uses. Water tank parameters include the general design of the tank, and choice of construction materials, linings. Various materials are used for making a water tank: plastics (polyethylene, polypropylene), fiberglass, concrete, stone, steel (welded or bolted, carbon, or stainless). Earthen pots, such as matki used in South Asia, can also be used for water storage. Water tanks are an efficient way to help developing countries to store clean water.

↓ Explore More Topics
In this Dossier

Polypropylene in the context of Polyvinyl chloride

Polyvinyl chloride (alternatively: poly(vinyl chloride), colloquial: vinyl or polyvinyl; abbreviated: PVC) is the world's third-most widely produced synthetic polymer of plastic (after polyethylene and polypropylene). About 40 million tons of PVC are produced each year.

↑ Return to Menu

Polypropylene in the context of Titanium

Titanium is a chemical element; it has symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength that is resistant to corrosion in sea water, aqua regia, and chlorine.

Titanium was discovered in Cornwall, Great Britain, by William Gregor in 1791 and was named by Martin Heinrich Klaproth after the Titans of Greek mythology. The element occurs within a number of minerals, principally rutile and ilmenite, which are widely distributed in the Earth's crust and lithosphere; it is found in almost all living things, as well as bodies of water, rocks, and soils. The metal is extracted from its principal mineral ores by the Kroll and Hunter processes. The most common compound, titanium dioxide (TiO2), is a popular photocatalyst and is used in the manufacture of white pigments. Other compounds include titanium tetrachloride (TiCl4), a component of smoke screens and catalysts; and titanium trichloride (TiCl3), which is used as a catalyst in the production of polypropylene.

↑ Return to Menu

Polypropylene in the context of Cleanroom suit

A cleanroom suit, clean room suit, or bunny suit, is an overall garment worn in a cleanroom, an environment with a controlled level of contamination. One common type is an all-in-one coverall worn by semiconductor and nanotechnology line production workers, technicians, and process / equipment engineers. Similar garments are worn by people in similar roles creating sterile products for the medical device, biopharmaceutical and optical instrument industries.

The suit covers the wearer to prevent skin and hair being shed into a clean room environment. The suit may be in one piece or consist of several separate garments worn tightly together. The suit incorporates both boots and hood, designed to be breathable and lightweight while protecting the wearer. Polypropylene with a polyethylene coating, or Tyvek polyethylene are standard. The materials found in cleanroom suits can also be found on personal protective equipment.

↑ Return to Menu

Polypropylene in the context of Toner (printing)

Toner is a powder mixture used in laser printers and photocopiers to form the text and images on paper, in general through a toner cartridge. Mostly granulated plastic, early mixtures added only carbon powder and iron oxide; now there are mixtures that contain polypropylene, fumed silica, and various minerals for triboelectrification. Toner using plant-derived plastic also exists as an alternative to petroleum plastic. Toner particles are melted by the heat of the fuser, and are thus bonded to the paper.

In earlier photocopiers, this low-cost carbon toner was poured by the user from a bottle into a reservoir in the machine. Later copiers, and laser printers from the first 1984 Hewlett-Packard LaserJet, feed directly from a sealed toner cartridge.

↑ Return to Menu

Polypropylene in the context of Sandbag

A sandbag or dirtbag is a bag or sack made of hessian (burlap), polypropylene or other sturdy materials that is filled with sand or soil and used for such purposes as flood control, military fortification in trenches and bunkers, shielding glass windows in war zones, ballast, counterweight, and in other applications requiring mobile fortification, such as adding improvised additional protection to armored vehicles or tanks.

The advantages are that the bags and sand are inexpensive. When empty, the bags are compact and lightweight for easy storage and transportation. They can be brought to a site empty and filled with local sand or soil. Disadvantages are that filling bags is labor-intensive. Without proper training, sandbag walls can be constructed improperly causing them to fail at a lower height than expected, when used in flood-control purposes. They can degrade prematurely in the sun and elements once deployed. They can also become contaminated by sewage in flood waters making them difficult to deal with after flood waters recede. In a military context, improvised up-armouring of tanks or armored personnel carriers with sandbags is not effective against cannons (though it may offer protection against some small arms).

↑ Return to Menu

Polypropylene in the context of Microfiber

Microfiber (US) or microfibre (UK) is synthetic fiber finer than one denier or decitex/thread, having a diameter of less than ten micrometers.

The most common types of microfiber are made variously of polyesters; polyamides (e.g., nylon, Kevlar, Nomex); and combinations of polyester, polyamide, and polypropylene. Microfiber is used to make mats, knits, and weaves, for apparel, upholstery, industrial filters, and cleaning products. The shape, size, and combinations of synthetic fibers are chosen for specific characteristics, including softness, toughness, absorption, water repellence, electrostatics, and filtering ability.

↑ Return to Menu

Polypropylene in the context of Ribbon

A ribbon or riband is a thin band of material, typically cloth but also plastic or sometimes metal, used primarily as decorative binding and tying. Cloth ribbons are made of natural materials such as silk, cotton, and jute and of synthetic materials, such as polyester, nylon, and polypropylene. Ribbon is used for useful, ornamental, and symbolic purposes. Cultures around the world use ribbon in their hair, around the body, and as ornament on non-human animals, buildings, and packaging. Some popular fabrics used to make ribbons are satin, organza, sheer, silk, velvet, and grosgrain.

↑ Return to Menu

Polypropylene in the context of Engineering plastic

Engineering plastics are a group of plastic materials that have better mechanical or thermal properties than the more widely used commodity plastics (such as polystyrene, polyvinyl chloride, polypropylene and polyethylene).

Engineering plastics are more expensive than standard plastics, therefore they are produced in lower quantities and tend to be used for smaller objects or low-volume applications (such as mechanical parts), rather than for bulk and high-volume ends (like containers and packaging). Engineering plastics have a higher heat resistance than standard plastics and are continuously usable at temperatures up to about 150 °C (300 °F).

↑ Return to Menu