Polyester in the context of Cushion


Polyester in the context of Cushion

Polyester Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Polyester in the context of "Cushion"


⭐ Core Definition: Polyester

Polyester is a category of polymers that contain one or two ester linkages in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include some naturally occurring chemicals, such as those found in plants and insects. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.

Polyester fibers are sometimes spun together with natural fibers to produce a cloth with blended properties. Cotton-polyester blends can be strong, wrinkle- and tear-resistant, and reduce shrinking. Synthetic fibers using polyester have high water, wind, and environmental resistance compared to plant-derived fibers. They are less fire-resistant and can melt when ignited.

↓ Menu
HINT:

In this Dossier

Polyester in the context of Photographic emulsion

Photographic emulsion is a light-sensitive colloid used in film-based photography. Most commonly, in silver-gelatin photography, it consists of silver halide crystals dispersed in gelatin. The emulsion is usually coated onto a substrate of glass, films (of cellulose nitrate, cellulose acetate or polyester), paper, or fabric. The substrate is often flexible and known as a film base.

Photographic emulsion is not a true emulsion, but a suspension of solid particles (silver halide) in a fluid (gelatin in solution). However, the word emulsion is customarily used in a photographic context. Gelatin or gum arabic layers sensitized with dichromate used in the dichromated colloid processes carbon and gum bichromate are sometimes called emulsions. Some processes do not have emulsions, such as platinum, cyanotype, salted paper, or kallitype.

View the full Wikipedia page for Photographic emulsion
↑ Return to Menu

Polyester in the context of Thread (yarn)

A thread is a long strand of material, often composed of several filaments or fibres, used for joining, creating or decorating textiles. Ancient Egyptians were known for creating thread using plant fibers, wool and hair. Today, thread can also be made of many different materials including but not limited to cotton, wool, flax, nylon, silk, polyester etc. There are also metal threads (sometimes used in decorative textiles), which can be made of fine wire.

Thread is similar to yarn, cord, twine, or string, and there is some overlap between the way these terms are used. However, thread is most often used to mean materials fine and smooth enough for sewing, embroidery, weaving, or making lace or net. Yarn is often used to mean a thicker and softer material, suitable for knitting and crochet. Cords, twines or strings are usually stronger materials, suitable for tying and fastening.

View the full Wikipedia page for Thread (yarn)
↑ Return to Menu

Polyester in the context of Woven fabric

Woven fabric is any textile formed by weaving. Woven fabrics, often created on a loom, are made of many threads woven in a warp and weft. Technically, a woven fabric is any fabric made by interlacing two or more threads at right angles to one another. Woven fabrics can be made of natural fibers, synthetic fibers, or a mixture of both, such as cotton and polyester. Woven fabrics are used for clothing, garments, decorations, furniture, carpets and other uses.

View the full Wikipedia page for Woven fabric
↑ Return to Menu

Polyester in the context of Spinning (textiles)

Spinning is a twisting technique to form yarn from fibers. The fiber intended is drawn out, twisted, and wound onto a bobbin. A few popular fibers that are spun into yarn other than cotton, which is the most popular, are viscose (the most common form of rayon), animal fibers such as wool, and synthetic polyester. Originally done by hand using a spindle whorl, starting in the 500s AD the spinning wheel became the predominant spinning tool across Asia and Europe. The spinning jenny and spinning mule, invented in the late 1700s, made mechanical spinning far more efficient than spinning by hand, and especially made cotton manufacturing one of the most important industries of the Industrial Revolution.

View the full Wikipedia page for Spinning (textiles)
↑ Return to Menu

Polyester in the context of Satin weave

A satin weave is a type of fabric weave that produces a characteristically glossy, smooth or lustrous material, typically with a glossy top surface and a dull back; it is not durable, as it tends to snag. It is one of three fundamental types of textile weaves alongside plain weave and twill weave.

The satin weave is characterised by four or more fill or weft yarns floating over a warp yarn, and four warp yarns floating over a single weft yarn. Floats are missed interfacings, for example where the warp yarn lies on top of the weft in a warp-faced satin. These floats explain the high lustre and even sheen, as unlike in other weaves, light is not scattered as much when hitting the fibres, resulting in a stronger reflection. Satin is usually a warp-faced weaving technique in which warp yarns are "floated" over weft yarns, although there are also weft-faced satins. If a fabric is formed with a satin weave using filament fibres such as silk, polyester or nylon, the corresponding fabric is termed a 'satin', although some definitions insist that a satin fabric is only made from silk. If the yarns used are short-staple yarns such as cotton, the fabric formed is considered a sateen.

View the full Wikipedia page for Satin weave
↑ Return to Menu

Polyester in the context of Polylactic acid

Polylactic acid, also known as poly(lactic acid) or polylactide (PLA), is a plastic material. As a thermoplastic polyester (or polyhydroxyalkanoate) it has the backbone formula (C
3
H
4
O
2
)
n
or [–C(CH
3
)HC(=O)O–]
n
. PLA is formally obtained by condensation of lactic acid C(CH
3
)(OH)HCOOH
with loss of water (hence its name). It can also be prepared by ring-opening polymerization of lactide [–C(CH
3
)HC(=O)O–]
2
, the cyclic dimer of the basic repeating unit. Often PLA is blended with other polymers. PLA can be biodegradable or long-lasting, depending on the manufacturing process, additives and copolymers.

View the full Wikipedia page for Polylactic acid
↑ Return to Menu

Polyester in the context of Film base

A film base is a transparent substrate which acts as a support medium for the photosensitive emulsion that lies atop it. Despite the numerous layers and coatings associated with the emulsion layer, the base generally accounts for the vast majority of the thickness of any given film stock. Since the late 19th century, there have been three major types of film base in use: nitrate (until about 1951), acetate, and polyester.

View the full Wikipedia page for Film base
↑ Return to Menu

Polyester in the context of Ilfochrome

Ilfochrome (also commonly known as Cibachrome) is a dye destruction positive-to-positive photographic process used for the reproduction of film transparencies on photographic paper. The prints are made on a dimensionally stable polyester base as opposed to traditional paper base. Since it uses 13 layers of azo dyes sealed in a polyester base, the print will not fade, discolour, or deteriorate for an extended time. Accelerated aging tests conducted by Henry Wilhelm rated the process as producing prints which, framed under glass, would last for 29 years before color shifts could be detected. Characteristics of Ilfochrome prints are image clarity, color purity, and being an archival process able to produce critical accuracy to the original transparency.

View the full Wikipedia page for Ilfochrome
↑ Return to Menu

Polyester in the context of Car seat

A car seat is a seat used in automobiles. Most car seats are made from inexpensive but durable material in order to withstand prolonged use. The most common material is polyester.

View the full Wikipedia page for Car seat
↑ Return to Menu

Polyester in the context of Ironing

Ironing is the use of an iron, usually heated, to remove wrinkles and unwanted creases from fabric. The heating is commonly done to a temperature of 180–220 °C (360–430 °F), depending on the fabric. Ironing works by loosening the bonds between the long-chain polymer molecules in the fibres of the material. While the molecules are hot, the fibres are straightened by the weight of the iron, and they hold their new shape as they cool. Some fabrics, such as cotton, require the addition of water to loosen the intermolecular bonds. Many modern fabrics (developed in or after the mid-twentieth century) are advertised as needing little or no ironing. Permanent press clothing was developed to reduce the ironing necessary by combining wrinkle-resistant polyester with cotton.

The first known use of heated metal to "iron" clothes is known to have occurred in China. The electric iron was invented in 1882, by Henry W. Seely. Seely patented his "electric flatiron" on June 6, 1882 (U.S. Patent no. 259,054).

View the full Wikipedia page for Ironing
↑ Return to Menu

Polyester in the context of Surfboard

A surfboard is a narrow plank used in surfing. Surfboards are relatively light, but are strong enough to support an individual standing on them while riding an ocean wave. They were invented in ancient Hawaii (known as papa heʻe nalu in Hawaiian) and were usually made of wood from local trees, such as koa. They were often over 460 cm (15 ft) in length and extremely heavy. Major advances over the years include the addition of one or more fins (skegs) on the bottom rear of the board to improve directional stability, and numerous improvements in materials and shape.

Modern surfboards are made of polyurethane or polystyrene foam. Unlike soft top surfboards, hard top surfboards are also covered with layers of fiberglass cloth, polyester or epoxy resin. The result is a light and strong surfboard that is buoyant and maneuverable. Recent developments in surfboard technology have included the use of carbon fiber and kevlar composites, as well as experimentation in biodegradable and ecologically friendly resins made from organic sources. Each year, approximately 400,000 surfboards are manufactured.

View the full Wikipedia page for Surfboard
↑ Return to Menu

Polyester in the context of Polyisocyanurate

Polyisocyanurate (/ˌpɒlɪˌssˈænjʊərt/), also referred to as PIR, polyol, or ISO, is a thermoset plastic typically produced as a foam and used as rigid thermal insulation. The starting materials are similar to those used in polyurethane (PUR) except that the proportion of methylene diphenyl diisocyanate (MDI) is higher and a polyester-derived polyol is used in the reaction instead of a polyether polyol. The resulting chemical structure is significantly different, with the isocyanate groups on the MDI trimerising to form isocyanurate groups which the polyols link together, giving a complex polymeric structure.

View the full Wikipedia page for Polyisocyanurate
↑ Return to Menu

Polyester in the context of Organza

Organza is a thin, plain weave, sheer fabric traditionally made from silk. Many modern organzas are woven with synthetic filament fibers such as polyester or nylon. Silk organza is woven by a number of mills along the Yangtze River and in the province of Zhejiang in China. A coarser silk organza is woven in the Bangalore area of India. Deluxe silk organzas are woven in France and Italy. Organza is distinguished by its crisp hand, stiffness relative to weight, and slippery surface texture.

The term may derive from French organsin, ultimately from the Central Asian city of Urgench, the midpoint of the Northern Silk Road.

View the full Wikipedia page for Organza
↑ Return to Menu

Polyester in the context of Alkyd

An alkyd is a polyester resin modified by the addition of fatty acids and other components. Alkyds are derived from polyols and organic acids including dicarboxylic acids or carboxylic acid anhydride and triglyceride oils. The term alkyd is a modification of the original name "alcid", reflecting the fact that they are derived from alcohol and organic acids. The inclusion of a fatty acid confers a tendency to form flexible coatings. Alkyds are used in paints, varnishes and in moulds for casting. They are the dominant resin or binder in most commercial oil-based coatings. Approximately 200,000 tons of alkyd resins are produced each year. The original alkyds were compounds of glycerol and phthalic acid sold under the name Glyptal. These were sold as substitutes for the darker-colored copal resins, thus creating alkyd varnishes that were much paler in colour. From these, the alkyds that are known today were developed.

View the full Wikipedia page for Alkyd
↑ Return to Menu

Polyester in the context of Polyethylene terephthalate

Polyethylene terephthalate (or poly(ethylene terephthalate), PET, PETE, or the obsolete PETP or PET-P), is the most common thermoplastic polymer resin of the polyester family and is used in fibres for clothing, containers for liquids and foods, and thermoforming for manufacturing, and in combination with glass fibre for engineering resins.

View the full Wikipedia page for Polyethylene terephthalate
↑ Return to Menu

Polyester in the context of Polyhydroxyalkanoate

Polyhydroxyalkanoates or PHAs are polyesters produced in nature by numerous microorganisms, including through bacterial fermentation of sugars or lipids. When produced by bacteria they serve as both a source of energy and as a carbon store. More than 150 different monomers can be combined within this family to give materials with extremely different properties. These plastics are biodegradable and are used in the production of bioplastics.

They can be either thermoplastic or elastomeric materials, with melting points ranging from 40 to 180 °C.

View the full Wikipedia page for Polyhydroxyalkanoate
↑ Return to Menu

Polyester in the context of Microfiber

Microfiber (US) or microfibre (UK) is synthetic fiber finer than one denier or decitex/thread, having a diameter of less than ten micrometers.

The most common types of microfiber are made variously of polyesters; polyamides (e.g., nylon, Kevlar, Nomex); and combinations of polyester, polyamide, and polypropylene. Microfiber is used to make mats, knits, and weaves, for apparel, upholstery, industrial filters, and cleaning products. The shape, size, and combinations of synthetic fibers are chosen for specific characteristics, including softness, toughness, absorption, water repellence, electrostatics, and filtering ability.

View the full Wikipedia page for Microfiber
↑ Return to Menu

Polyester in the context of Cellulose acetate film

Cellulose acetate film, or safety film, is used in photography as a base material for photographic emulsions. It was introduced in the early 20th century by film manufacturers and intended as a safe film base replacement for unstable and highly flammable nitrate film.

Cellulose diacetate film was first employed commercially for photographic film in 1909. Cellulose acetate propionate and cellulose acetate butyrate were introduced in the 1930s, and cellulose triacetate in the late 1940s. Acetate films were later replaced by polyester bases.

View the full Wikipedia page for Cellulose acetate film
↑ Return to Menu