Pnictogen in the context of "Phosphorus"

Play Trivia Questions online!

or

Skip to study material about Pnictogen in the context of "Phosphorus"

Ad spacer

⭐ Core Definition: Pnictogen

A pnictogen (/ˈ(p)nɪktəən/; from Ancient Greek πνίγω (pnígō) 'to choke' and -gen 'generator') is any of the chemical elements in group 15 of the periodic table. Group 15 is also known as the nitrogen group or nitrogen family. Group 15 consists of the elements nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), bismuth (Bi), and moscovium (Mc).

The IUPAC has called it Group 15 since 1988. Before that, in America it was called Group VA, owing to a text by H. C. Deming and the Sargent-Welch Scientific Company, while in Europe it was called Group VB, which the IUPAC had recommended in 1970. (Pronounced "group five A" and "group five B"; "V" is the Roman numeral 5.) In semiconductor physics, it is still usually called Group V. The "five" ("V") in the historical names comes from the "pentavalency" of nitrogen, reflected by the stoichiometry of compounds such as N2O5. They have also been called the pentels.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Pnictogen in the context of Phosphorus

Phosphorus is a chemical element; it has symbol P and atomic number 15. All elemental forms of phosphorus are highly reactive and are therefore never found in nature. They can nevertheless be prepared artificially, the two most common allotropes being white phosphorus and red phosphorus. With P as its only stable isotope, phosphorus has an occurrence in Earth's crust of about 0.1%, generally as phosphate rock. A member of the pnictogen family, phosphorus readily forms a wide variety of organic and inorganic compounds, with as its main oxidation states +5, +3 and −3.

The isolation of white phosphorus in 1669 by Hennig Brand marked the scientific community's first discovery of an element since antiquity. The name phosphorus is a reference to the god of the Morning star in Greek mythology, inspired by the faint glow of white phosphorus when exposed to oxygen. This property is also at the origin of the term phosphorescence, meaning glow after illumination, although white phosphorus itself does not exhibit phosphorescence, but chemiluminescence caused by its oxidation. Its high toxicity makes exposure to white phosphorus very dangerous, while its flammability and pyrophoricity can be weaponised in the form of incendiaries. Red phosphorus is less dangerous and is used in matches and fire retardants.

↓ Explore More Topics
In this Dossier

Pnictogen in the context of Nitrogen

Nitrogen is a chemical element; it has symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System. At standard temperature and pressure, two atoms of the element bond to form N2, a colourless and odourless diatomic gas. N2 forms about 78% of Earth's atmosphere, making it the most abundant chemical species in air. Because of the volatility of nitrogen compounds, nitrogen is relatively rare in the solid parts of the Earth.

It was first discovered and isolated by Scottish physician Daniel Rutherford in 1772 and independently by Carl Wilhelm Scheele and Henry Cavendish at about the same time. The name nitrogène was suggested by French chemist Jean-Antoine-Claude Chaptal in 1790 when it was found that nitrogen was present in nitric acid and nitrates. Antoine Lavoisier suggested instead the name azote, from the Ancient Greek: ἀζωτικός "no life", as it is an asphyxiant gas; this name is used in a number of languages, and appears in the English names of some nitrogen compounds such as hydrazine, azides and azo compounds.

↑ Return to Menu

Pnictogen in the context of Bismuth

Bismuth is a chemical element; it has symbol Bi and atomic number 83. It is a post-transition metal and one of the pnictogens, with chemical properties resembling its lighter group 15 siblings arsenic and antimony. Elemental bismuth occurs naturally, and its sulfide and oxide forms are important commercial ores. The free element is 86% as dense as lead. It is a brittle metal with a silvery-white color when freshly produced. Surface oxidation generally gives samples of the metal a somewhat rosy cast. Further oxidation under heat can give bismuth a vividly iridescent appearance due to thin-film interference. Bismuth is both the most diamagnetic element and one of the least thermally conductive metals known.

Bismuth was formerly understood to be the element with the highest atomic mass whose nuclei do not spontaneously decay. However, in 2003 it was found to be very slightly radioactive. The metal's only primordial isotope, bismuth-209, undergoes alpha decay with a half-life roughly a billion times longer than the estimated age of the universe.

↑ Return to Menu

Pnictogen in the context of Organophosphorus compound

Organophosphorus chemistry is the scientific study of the synthesis and properties of organophosphorus compounds, which are organic compounds containing phosphorus. They are used primarily in pest control as an alternative to chlorinated hydrocarbons that persist in the environment. Some organophosphorus compounds are highly effective insecticides, although some are extremely toxic to humans, including sarin and VX nerve agents.

Phosphorus, like nitrogen, is in group 15 of the periodic table, and thus phosphorus compounds and nitrogen compounds have many similar properties. The definition of organophosphorus compounds is variable, which can lead to confusion. In industrial and environmental chemistry, an organophosphorus compound need contain only an organic substituent, but need not have a direct phosphorus-carbon (P−C) bond. Thus a large proportion of pesticides (e.g., malathion), are often included in this class of compounds.

↑ Return to Menu

Pnictogen in the context of Pnictogen hydride

Pnictogen hydrides or hydrogen pnictides are binary compounds of hydrogen with pnictogen atoms (elements of group 15: nitrogen, phosphorus, arsenic, antimony, bismuth, and moscovium).

↑ Return to Menu

Pnictogen in the context of Moscovium

Moscovium is a synthetic chemical element; it has symbol Mc and atomic number 115. It was first synthesized in 2003 by a joint team of Russian and American scientists at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. In December 2015, it was recognized as one of four new elements by the Joint Working Party of international scientific bodies IUPAC and IUPAP. On 28 November 2016, it was officially named after the Moscow Oblast, in which the JINR is situated.

Moscovium is an extremely radioactive element: its most stable known isotope, moscovium-290, has a half-life of only 0.65 seconds. In the periodic table, it is a p-block transactinide element. It is a member of the 7th period and is placed in group 15 as the heaviest pnictogen. Moscovium is calculated to have some properties similar to its lighter homologues, nitrogen, phosphorus, arsenic, antimony, and bismuth, and to be a post-transition metal, although it should also show several major differences from them. In particular, moscovium should also have significant similarities to thallium, as both have one rather loosely bound electron outside a quasi-closed shell. Chemical experimentation on single atoms has confirmed theoretical expectations that moscovium is less reactive than its lighter homologue bismuth. Over a hundred atoms of moscovium have been observed to date, all of which have been shown to have mass numbers from 286 to 290.

↑ Return to Menu