Pluto in the context of "List of minor planets"

Play Trivia Questions online!

or

Skip to study material about Pluto in the context of "List of minor planets"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Pluto in the context of Atmosphere

An atmosphere is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. The name originates from Ancient Greek ἀτμός (atmós) 'vapour, steam' and σφαῖρα (sphaîra) 'sphere'. An object acquires most of its atmosphere during its primordial epoch, either by accretion of matter or by outgassing of volatiles. The chemical interaction of the atmosphere with the solid surface can change its fundamental composition, as can photochemical interaction with the Sun. A planet retains an atmosphere for longer durations when the gravity is high and the temperature is low. The solar wind works to strip away a planet's outer atmosphere, although this process is slowed by a magnetosphere. The further a body is from the Sun, the lower the rate of atmospheric stripping.

Aside from Mercury, all Solar System planets have substantial atmospheres, as does the dwarf planet Pluto and the moon Titan. The high gravity and low temperature of Jupiter and the other gas giant planets allow them to retain massive atmospheres of mostly hydrogen and helium. Lower mass terrestrial planets orbit closer to the Sun, and so mainly retain higher density atmospheres made of carbon, nitrogen, and oxygen, with trace amounts of inert gas. Atmospheres have been detected around exoplanets such as HD 209458 b and Kepler-7b.

↑ Return to Menu

Pluto in the context of New Horizons

New Horizons is an interplanetary space probe launched as a part of NASA's New Frontiers program. It was launched in 2006, becoming the first spacecraft to perform a flyby study of the Pluto system in 2015. A secondary mission contained a flyby and study of one or more other Kuiper belt objects (KBOs) in the decade to follow, where it flew past 486958 Arrokoth in 2019. It was the first space probe to ever take high-resolution photographs of Pluto in 2015.

It was engineered by the Johns Hopkins University Applied Physics Laboratory (APL) and the Southwest Research Institute (SwRI), with a team led by Alan Stern. New Horizons is the fifth space probe to achieve the escape velocity needed to leave the Solar System.

↑ Return to Menu

Pluto in the context of Asteroid belt

The asteroid belt is a torus-shaped region in the Solar System, centered on the Sun and roughly spanning the space between the orbits of the planets Jupiter and Mars. It contains a great many solid, irregularly shaped bodies called asteroids or minor planets. The identified objects are of many sizes, but much smaller than planets, and, on average, are about one million kilometers (or six hundred thousand miles) apart. This asteroid belt is also called the main asteroid belt or main belt to distinguish it from other asteroid populations in the Solar System.

The asteroid belt is the smallest and innermost circumstellar disc in the Solar System. Classes of small Solar System bodies in other regions are the near-Earth objects, the centaurs, the Kuiper belt objects, the scattered disc objects, the sednoids, and the Oort cloud objects. About 60% of the main belt mass is contained in the four largest asteroids: Ceres, Vesta, Pallas, and Hygiea. The total mass of the asteroid belt is estimated to be 3% that of the Moon.

↑ Return to Menu

Pluto in the context of IAU definition of planet

The International Astronomical Union (IAU) adopted in August 2006 the definition made by Uruguayan astronomers Julio Ángel Fernández and Gonzalo Tancredi that stated, that in the Solar System, a planet is a celestial body that:

  1. is in orbit around the Sun,
  2. has sufficient mass to assume hydrostatic equilibrium (a nearly round shape), and
  3. has "cleared the neighbourhood" around its orbit.

A non-satellite body fulfilling only the first two of these criteria (such as Pluto, which had hitherto been considered a planet) is classified as a dwarf planet. According to the IAU, "planets and dwarf planets are two distinct classes of objects" – in other words, "dwarf planets" are not planets. A non-satellite body fulfilling only the first criterion is termed a small Solar System body (SSSB). An alternate proposal included dwarf planets as a subcategory of planets, but IAU members voted against this proposal. The decision was a controversial one, and has drawn both support and criticism from astronomers.

↑ Return to Menu

Pluto in the context of Planetary science

Planetary science (or more rarely, planetology) is the scientific study of planets (including Earth), celestial bodies (such as moons, asteroids, comets) and planetary systems (in particular those of the Solar System) and the processes of their formation. It studies objects ranging in sizes from micrometeoroids to huge gas giants, with the aim of determining their composition, dynamics, formation, interrelations and history. It is a strongly interdisciplinary field, which originally grew from astronomy and Earth science, and now incorporates many disciplines, including planetary geology, cosmochemistry, atmospheric science, physics, oceanography, hydrology, theoretical planetary science, glaciology, and exoplanetology. Allied disciplines include space physics, when concerned with the effects of the Sun on the bodies of the Solar System, and astrobiology.

There are interrelated observational and theoretical branches of planetary science. Observational research can involve combinations of space exploration, predominantly with robotic spacecraft missions using remote sensing, and comparative, experimental work in Earth-based laboratories. The theoretical component involves considerable computer simulation and mathematical modelling.

↑ Return to Menu

Pluto in the context of Small Solar System body

A small Solar System body (SSSB) is an object in the Solar System that is neither a planet, a dwarf planet, nor a natural satellite. The term was first defined in 2006 by the International Astronomical Union (IAU) as follows: "All other objects, except satellites, orbiting the Sun shall be referred to collectively as 'Small Solar System Bodies'".

This encompasses all comets and all minor planets other than those that are dwarf planets. Thus SSSBs are: the comets; the classical asteroids, with the exception of the dwarf planet Ceres; the trojans; and the centaurs and trans-Neptunian objects, with the exception of the dwarf planets Pluto, Haumea, Makemake, Quaoar, Orcus, Sedna, Gonggong and Eris and others that may turn out to be dwarf planets.

↑ Return to Menu

Pluto in the context of Voyager 1

Voyager 1 is a space probe launched by NASA on September 5, 1977, as part of the Voyager program, to study the outer Solar System and the interstellar space beyond the Sun's heliosphere. It was launched 16 days after its twin, Voyager 2. It communicates through the NASA Deep Space Network (DSN) to receive routine commands and to transmit data to Earth. Real-time distance and velocity data are provided by NASA and JPL. At a distance of 170.02 AU (25.4 billion km; 15.8 billion mi) as of November 2025, it is the most distant human-made object from Earth. Voyager 1 is also projected to reach a distance of one light day from Earth in November of 2026.

The probe made flybys of Jupiter, Saturn, and Saturn's largest moon, Titan. NASA had a choice of either conducting a Pluto or Titan flyby. Exploration of Titan took priority because it was known to have a substantial atmosphere. Voyager 1 studied the weather, magnetic fields, and rings of the two gas giants and was the first probe to provide detailed images of their moons.

↑ Return to Menu

Pluto in the context of Barycenter

In astronomy, the barycenter (or barycentre; from Ancient Greek βαρύς (barús) 'heavy' and κέντρον (kéntron) 'center') is the center of mass of two or more bodies that orbit one another and is the point about which the bodies orbit. A barycenter is a dynamical point, not a physical object. It is an important concept in fields such as astronomy and astrophysics. The distance from a body's center of mass to the barycenter can be calculated as a two-body problem.

If one of the two orbiting bodies is much more massive than the other and the bodies are relatively close to one another, the barycenter will typically be located within the more massive object. In this case, rather than the two bodies appearing to orbit a point between them, the less massive body will appear to orbit about the more massive body, while the more massive body might be observed to wobble slightly. This is the case for the Earth–Moon system, whose barycenter is located on average 4,671 km (2,902 mi) from Earth's center, which is 74% of Earth's radius of 6,378 km (3,963 mi). When the two bodies are of similar masses, the barycenter will generally be located between them and both bodies will orbit around it. This is the case for Pluto and Charon, one of Pluto's natural satellites, as well as for many binary asteroids and binary stars. When the less massive object is far away, the barycenter can be located outside the more massive object. This is the case for Jupiter and the Sun; despite the Sun being a thousandfold more massive than Jupiter, their barycenter is slightly outside the Sun due to the relatively large distance between them.

↑ Return to Menu

Pluto in the context of Dwarf planet

A dwarf planet is a small planetary-mass object that is in direct orbit around the Sun, massive enough to be gravitationally rounded, but insufficient to achieve orbital dominance like the eight classical planets of the Solar System. The prototypical dwarf planet is Pluto, which for decades was regarded as a planet before the "dwarf" concept was adopted in 2006.Many planetary geologists consider dwarf planets and planetary-mass moons to be planets, but since 2006 the IAU and many astronomers have excluded them from the roster of planets.

Dwarf planets are capable of being geologically active, an expectation that was borne out in 2015 by the Dawn mission to Ceres and the New Horizons mission to Pluto. Planetary geologists are therefore particularly interested in them.

↑ Return to Menu