Planetary-mass moon in the context of "Dwarf planet"

Play Trivia Questions online!

or

Skip to study material about Planetary-mass moon in the context of "Dwarf planet"

Ad spacer

⭐ Core Definition: Planetary-mass moon

A planetary-mass moon is a planetary-mass object that is a natural satellite of another non-stellar celestial object. Because of their mass, these moons are large and ellipsoidal (sometimes spherical) in shape due to hydrostatic equilibrium caused by internal partial melting and differentiation and/or from tidal or radiogenic heating, in some cases forming a subsurface ocean.

Planetary-mass moons are sometimes called satellite planets by some planetary scientists such as Alan Stern, who are more concerned with whether a celestial body has planetary geology (that is, whether it is a planetary body) than its solar or non-solar orbit (planetary dynamics). Thus they consider planetary-mass moons to be a subset of the planets. This conceptualization of planets as three classes of objects (classical planets, dwarf planets and satellite planets) has not been accepted by the International Astronomical Union (the IAU).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Planetary-mass moon in the context of Dwarf planet

A dwarf planet is a small planetary-mass object that is in direct orbit around the Sun, massive enough to be gravitationally rounded, but insufficient to achieve orbital dominance like the eight classical planets of the Solar System. The prototypical dwarf planet is Pluto, which for decades was regarded as a planet before the "dwarf" concept was adopted in 2006.Many planetary geologists consider dwarf planets and planetary-mass moons to be planets, but since 2006 the IAU and many astronomers have excluded them from the roster of planets.

Dwarf planets are capable of being geologically active, an expectation that was borne out in 2015 by the Dawn mission to Ceres and the New Horizons mission to Pluto. Planetary geologists are therefore particularly interested in them.

↓ Explore More Topics
In this Dossier

Planetary-mass moon in the context of Terrestrial planets

A terrestrial planet is a class of planet that is composed primarily of silicate, rocks, or metals. It may instead be known as a tellurian planet, telluric planet, or rocky planet. Within the Solar System, the terrestrial planets accepted by the International Astronomical Union are the inner planets closest to the Sun: Mercury, Venus, Earth and Mars. Among astronomers who use the geophysical definition of a planet, two or three planetary-mass satellites – Earth's Moon, Io, and sometimes Europa – may also be considered terrestrial planets. The large rocky asteroids Pallas and Vesta are sometimes included as well, albeit rarely. The terms "terrestrial planet" and "telluric planet" are derived from Latin words for Earth (Terra and Tellus), as these planets are, in terms of structure, Earth-like. Terrestrial planets are generally studied by geologists, astronomers, and geophysicists.

Terrestrial planets have a solid planetary surface, making them substantially different from larger gaseous planets, which are composed mostly of some combination of hydrogen, helium, and water existing in various physical states.

↑ Return to Menu

Planetary-mass moon in the context of Titan (moon)

Titan is the largest moon of Saturn and the second-largest in the Solar System. It is the only moon known to have a dense atmosphere—denser than Earth's—and is the only known object in the Solar System besides Earth with clear evidence of stable bodies of surface liquid. Titan is one of seven gravitationally rounded moons of Saturn and the second-most distant among them. Frequently described as a planet-like moon, Titan is 50% larger in diameter than Earth's Moon and 80% more massive. It is the second-largest moon in the Solar System after Jupiter's Ganymede and is larger than Mercury; yet Titan is only 40% as massive as Mercury, because Mercury is mainly iron and rock while much of Titan is mostly ice, which is less dense.

Discovered in 1655 by the Dutch astronomer Christiaan Huygens, Titan was the first known moon of Saturn and the sixth known planetary satellite (after Earth's moon and the four Galilean moons of Jupiter). Titan orbits Saturn at 20 Saturn radii or 1,200,000 km above Saturn's apparent surface. From Titan's surface, Saturn, disregarding its rings, subtends an arc of 5.09 degrees, and when viewed from above its thick atmospheric haze it would appear 11.4 times larger in the sky, in diameter, than the Moon from Earth, which subtends 0.48° of arc.

↑ Return to Menu

Planetary-mass moon in the context of Galilean moons

The Galilean moons (/ˌɡælɪˈl.ən/), or Galilean satellites, are the four largest moons of Jupiter. They are, in descending-size order, Ganymede, Callisto, Io, and Europa. They are the most readily visible Solar System objects after Saturn, the dimmest of the classical planets; though their closeness to bright Jupiter makes naked-eye observation very difficult, they are readily seen with common binoculars, even under night sky conditions of high light pollution. The invention of the telescope allowed astronomers to discover the moons in 1610. Through this, they became the first Solar System objects discovered since humans have started tracking the classical planets, and the first objects to be found to orbit any planet beyond Earth.

They are planetary-mass moons and among the largest objects in the Solar System. All four, along with Titan, Triton, and Earth's Moon, are larger than any of the Solar System's dwarf planets. The largest, Ganymede, is the largest moon in the Solar System and surpasses the planet Mercury in size (though not mass). Callisto is only slightly smaller than Mercury in size; the smaller ones, Io and Europa, are about the size of the Moon. The three inner moons — Io, Europa, and Ganymede — are in a 4:2:1 orbital resonance with each other. While the Galilean moons are spherical, all of Jupiter's remaining moons have irregular forms because they are too small for their self-gravitation to pull them into spheres.

↑ Return to Menu

Planetary-mass moon in the context of Europa (moon)

Europa (/jʊˈrpə/ ) is the smallest and least massive of the four Galilean moons of Jupiter. It is observable from Earth with common binoculars and is a planetary-mass moon, slightly smaller and less massive than Earth's Moon. Europa is an icy moon, and, of the three icy Galilean moons, the closest orbiting Jupiter. As a result, it exhibits a relatively young surface, driven by tidal heating.

Probably having an iron–nickel core, it consists mainly of silicate rock, with a water-ice shell. It has a very thin atmosphere, composed primarily of oxygen. Its geologically young white-beige surface is striated by light tan cracks and streaks, with very few impact craters. In addition to Earth-bound telescope observations, Europa has been examined by a succession of space-probe flybys, the first occurring in the early 1970s. In September 2022, the Juno spacecraft flew within about 320 km (200 miles) of Europa for a more recent close-up view.

↑ Return to Menu

Planetary-mass moon in the context of Planetary body

A planetary-mass object (PMO), planemo, or planetary body (sometimes referred to as a world) is, by geophysical definition of celestial objects, any celestial object massive enough to achieve hydrostatic equilibrium and assume an ellipsoid shape, but not enough to sustain core fusion like a star.

The purpose of this term is to classify together a broader range of celestial objects than just "planet", since many objects similar in geophysical terms do not conform to conventional astrodynamic expectations for a planet. Planetary-mass objects can be quite diverse in origin and location, and include planets, dwarf planets, planetary-mass moons and free-floating planets, which may have been ejected from a system (rogue planets) or formed through cloud-collapse rather than accretion (sub-brown dwarfs).

↑ Return to Menu