Pleiotropy (from Ancient Greek πλείων (pleíōn) 'more' and τρόπος (trópos) 'turn, way, manner, style') is a condition in which a single gene or genetic variant influences multiple phenotypic traits. A gene that has such multiple effects is referred to as a pleiotropic gene. Mutations in pleiotropic genes can affect several traits simultaneously, often because the gene product is used in various cells and affects different biological targets through shared signaling pathways.
Pleiotropy can result from several distinct but potentially overlapping mechanisms, including gene pleiotropy, developmental pleiotropy, and selectional pleiotropy. Gene pleiotropy occurs when a gene product interacts with multiple proteins or catalyzes different reactions. Developmental pleiotropy refers to mutations that produce several phenotypic effects during development. Selectional pleiotropy occurs when a single phenotype influences evolutionary fitness in multiple ways (depending on factors such as age and sex).