Pleiotropy in the context of "Biology and sexual orientation"

Play Trivia Questions online!

or

Skip to study material about Pleiotropy in the context of "Biology and sexual orientation"

Ad spacer

⭐ Core Definition: Pleiotropy

Pleiotropy (from Ancient Greek πλείων (pleíōn) 'more' and τρόπος (trópos) 'turn, way, manner, style') is a condition in which a single gene or genetic variant influences multiple phenotypic traits. A gene that has such multiple effects is referred to as a pleiotropic gene. Mutations in pleiotropic genes can affect several traits simultaneously, often because the gene product is used in various cells and affects different biological targets through shared signaling pathways.

Pleiotropy can result from several distinct but potentially overlapping mechanisms, including gene pleiotropy, developmental pleiotropy, and selectional pleiotropy. Gene pleiotropy occurs when a gene product interacts with multiple proteins or catalyzes different reactions. Developmental pleiotropy refers to mutations that produce several phenotypic effects during development. Selectional pleiotropy occurs when a single phenotype influences evolutionary fitness in multiple ways (depending on factors such as age and sex).

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Pleiotropy in the context of Biology and sexual orientation

The relationship between biology and sexual orientation is a subject of ongoing research. While scientists do not know the exact cause of sexual orientation, they theorize that it is caused by a complex interplay of genetic, hormonal, and environmental influences. However, evidence is weak for hypotheses that the postnatal social environment impacts sexual orientation, especially for males.

Biological theories for explaining the causes of sexual orientation are favored by scientists. These factors, which may be related to the development of a sexual orientation, include genes, the early uterine environment (such as prenatal hormones), and brain structure. While the evolutionary explanation for heterosexuality in organisms that reproduce sexually is straightforwardly understood to be a psychological adaptation resulting from greater reproductive success, evolutionary explanations for homosexuality rely upon other mechanisms of evolution such as kin selection and inclusive fitness, or antagonistic pleiotropy that favors heterozygotes causing homosexuality among homozygotes as a by-product.

↓ Explore More Topics
In this Dossier

Pleiotropy in the context of Genetic architecture

Genetic architecture is the underlying genetic basis of a phenotypic trait and its variational properties. Phenotypic variation for quantitative traits is, at the most basic level, the result of the segregation of alleles at quantitative trait loci (QTL). Environmental factors and other external influences can also play a role in phenotypic variation. Genetic architecture is a broad term that can be described for any given individual based on information regarding gene and allele number, the distribution of allelic and mutational effects, and patterns of pleiotropy, dominance, and epistasis.

There are several different experimental views of genetic architecture. Some researchers recognize that the interplay of various genetic mechanisms is incredibly complex, but believe that these mechanisms can be averaged and treated, more or less, like statistical noise. Other researchers claim that each and every gene interaction is significant and that it is necessary to measure and model these individual systemic influences on evolutionary genetics.

↑ Return to Menu

Pleiotropy in the context of Signalling theory

Within evolutionary biology, signalling theory is a body of theoretical work examining communication between individuals, both within species and across species. The central question is how organisms with conflicting interests, such as in sexual selection, are expected to provide honest signals rather than deceive or cheat, given that the passing on of pleiotropic traits is subject to natural selection, which aims to minimize associated costs without assuming any conscious intent. Mathematical models describe how signalling can contribute to an evolutionarily stable strategy.

Signals are given in contexts such as mate selection by females, which subjects the advertising males' signals to selective pressure. Signals thus evolve because they modify the behaviour of the receiver to benefit the signaller. Signals may be honest, conveying information which usefully increases the fitness of the receiver, or dishonest. An individual can cheat by giving a dishonest signal, which might briefly benefit that signaller, at the risk of undermining the signalling system for the whole population.

↑ Return to Menu

Pleiotropy in the context of Genomic

Genomics is an interdisciplinary field of molecular biology focusing on the structure, function, evolution, mapping, and editing of genomes. A genome is an organism's complete set of DNA, including all of its genes as well as its hierarchical, three-dimensional structural configuration. In contrast to genetics, which refers to the study of individual genes and their roles in inheritance, genomics aims at the collective characterization and quantification of all of an organism's genes, their interrelations and influence on the organism. Genes may direct the production of proteins with the assistance of enzymes and messenger molecules. In turn, proteins make up body structures such as organs and tissues as well as control chemical reactions and carry signals between cells. Genomics also involves the sequencing and analysis of genomes through uses of high throughput DNA sequencing and bioinformatics to assemble and analyze the function and structure of entire genomes. Advances in genomics have triggered a revolution in discovery-based research and systems biology to facilitate understanding of even the most complex biological systems such as the brain.

The field also includes studies of intragenomic (within the genome) phenomena such as epistasis (effect of one gene on another), pleiotropy (one gene affecting more than one trait), heterosis (hybrid vigour), and other interactions between loci and alleles within the genome.

↑ Return to Menu

Pleiotropy in the context of Polygenic

A polygene is a member of a group of non-epistatic genes that interact additively to influence a phenotypic trait, thus contributing to multiple-gene inheritance (polygenic inheritance, multigenic inheritance, quantitative inheritance), a type of non-Mendelian inheritance, as opposed to single-gene inheritance, which is the core notion of Mendelian inheritance. The term "monozygous" is usually used to refer to a hypothetical gene as it is often difficult to distinguish the effect of an individual gene from the effects of other genes and the environment on a particular phenotype. Advances in statistical methodology and high throughput sequencing are, however, allowing researchers to locate candidate genes for the trait. In the case that such a gene is identified, it is referred to as a quantitative trait locus (QTL). These genes are generally pleiotropic as well. The genes that contribute to type 2 diabetes are thought to be mostly polygenes. In July 2016, scientists reported identifying a set of 355 genes from the last universal common ancestor (LUCA) of all organisms living on Earth.

Traits with polygenic determinism correspond to the classical quantitative characters, as opposed to the qualitative characters with monogenic or oligogenic determinism. In essence instead of two options, such as freckles or no freckles, there are many variations, like the color of skin, hair, or even eyes.

↑ Return to Menu