Plate reconstruction in the context of Continent-ocean boundary


Plate reconstruction in the context of Continent-ocean boundary

Plate reconstruction Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Plate reconstruction in the context of "Continent-ocean boundary"


⭐ Core Definition: Plate reconstruction

Plate reconstruction is the process of reconstructing the positions of tectonic plates relative to each other (relative motion) or to other reference frames, such as the Earth's magnetic field or groups of hotspots, in the geological past. This helps determine the shape and make-up of ancient supercontinents and provides a basis for paleogeographic reconstructions.

↓ Menu
HINT:

👉 Plate reconstruction in the context of Continent-ocean boundary

The continent-ocean boundary (COB) or continent-ocean transition (COT) or continent-ocean transition zone (COTZ) is the boundary between continental crust and oceanic crust on a passive margin or the zone of transition between these two crustal types. The identification of continent-ocean boundaries is important in the definition of plate boundaries at the time of break-up when trying to reconstruct the geometry and position of ancient continents e.g. in the reconstruction of Pangaea.

↓ Explore More Topics
In this Dossier

Plate reconstruction in the context of Rodinia

Rodinia (from the Russian родина, rodina, meaning "motherland, birthplace") was a Mesoproterozoic and Neoproterozoic supercontinent that assembled 1.26–0.90 billion years ago (Ga) and broke up 750–633 million years ago (Ma). Valentine & Moores 1970 were probably the first to recognise a Precambrian supercontinent, which they named "Pangaea I." It was renamed "Rodinia" by McMenamin & McMenamin 1990, who also were the first to produce a plate reconstruction and propose a temporal framework for the supercontinent.

Rodinia formed at c. 1.23 Ga by accretion and collision of fragments produced by breakup of an older supercontinent, Columbia, assembled by global-scale 2.0–1.8 Ga collisional events. Rodinia broke up in the Neoproterozoic, with its continental fragments reassembled to form Pannotia 633–573 Ma. In contrast with Pannotia, little is known about Rodinia's configuration and geodynamic history. Paleomagnetic evidence provides some clues to the paleolatitude of individual pieces of the Earth's crust, but not to their longitude, which geologists have pieced together by comparing similar geologic features, often now widely dispersed.

View the full Wikipedia page for Rodinia
↑ Return to Menu