Planetary dynamics in the context of "Orbital mechanics"

Play Trivia Questions online!

or

Skip to study material about Planetary dynamics in the context of "Orbital mechanics"

Ad spacer

⭐ Core Definition: Planetary dynamics

Celestial mechanics is the branch of astronomy that deals with the motions and gravitational interactions of objects in outer space. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to produce ephemeris data. The computation of the motion of the bodies through orbital mechanics can be simplified by using an appropriate inertial frame of reference. This leads to the use of various different coordinate systems, such as the Heliocentric (Sun-centered) coordinate system.

In a binary system of objects interacting through gravity, Newtonian mechanics can used to produce a set of orbital elements that will predict with reasonable accuracy the future position of the two bodies. This method demonstrates the correctness of Kepler's laws of planetary motion. Where one of the bodies is sufficiently massive, general relativity must be included to predict apsidal precession. The problem becomes more complicated when another body is added, creating a three-body problem that can not be solved exactly. Perturbation theory is used to find an approximate solution to this problem.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Planetary dynamics in the context of Satellite planet

A planetary-mass moon is a planetary-mass object that is a natural satellite of another non-stellar celestial object. Because of their mass, these moons are large and ellipsoidal (sometimes spherical) in shape due to hydrostatic equilibrium caused by internal partial melting and differentiation and/or from tidal or radiogenic heating, in some cases forming a subsurface ocean.

Planetary-mass moons are sometimes called satellite planets by some planetary scientists such as Alan Stern, who are more concerned with whether a celestial body has planetary geology (that is, whether it is a planetary body) than its solar or non-solar orbit (planetary dynamics). Thus they consider planetary-mass moons to be a subset of the planets. This conceptualization of planets as three classes of objects (classical planets, dwarf planets and satellite planets) has not been accepted by the International Astronomical Union (the IAU).

↑ Return to Menu