Plane (geometry)


A Euclidean plane is a two-dimensional Euclidean space requiring two real numbers to define the position of any point within it. This geometric space incorporates the concept of parallel lines and possesses metrical properties derived from Euclidean distance, enabling the definition of shapes like circles and the measurement of angles.

⭐ In the context of geometry, a Euclidean plane is fundamentally characterized by its ability to define the location of points using what type of numerical values?


⭐ Core Definition: Plane (geometry)

In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted or . It is a geometric space in which two real numbers are required to determine the position of each point. It is an affine space, which includes in particular the concept of parallel lines. It has also metrical properties induced by a distance, which allows to define circles, and angle measurement.

A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane.The set of the ordered pairs of real numbers (the real coordinate plane), equipped with the dot product, is often called the Euclidean plane or standard Euclidean plane, since every Euclidean plane is isomorphic to it.

↓ Menu
In the context of geometry, a Euclidean plane is fundamentally characterized by its ability to define the location of points using what type of numerical values?
HINT: A Euclidean plane, by definition, is a two-dimensional space where the position of each point is determined by a pair of real numbers, establishing its coordinate system.

In this Dossier

Plane (geometry) in the context of Flat Earth

Flat Earth is an archaic and scientifically disproven conception of the Earth's shape as a plane or disk. Many ancient cultures subscribed to a flat-Earth cosmography. The model has undergone a recent resurgence as a conspiracy theory in the 21st century.

The idea of a spherical Earth appeared in ancient Greek philosophy with Pythagoras (6th century BC). However, the early Greek cosmological view of a flat Earth persisted among most pre-Socratics (6th–5th century BC). In the early 4th century BC, Plato wrote about a spherical Earth. By about 330 BC, his former student Aristotle had provided strong empirical evidence for a spherical Earth. Knowledge of the Earth's global shape gradually began to spread beyond the Hellenistic world. By the early period of the Christian Church, the spherical view was widely held, with some notable exceptions. In contrast, ancient Chinese scholars consistently describe the Earth as flat, and this perception remained unchanged until their encounters with Jesuit missionaries in the 17th century. Muslim scholars in early Islam maintained that the Earth is flat. However, since the 9th century, Muslim scholars have tended to believe in a spherical Earth.

View the full Wikipedia page for Flat Earth
↑ Return to Menu

Plane (geometry) in the context of Relief

Relief is a sculptural method in which the sculpted pieces remain attached to a solid background of the same material. The term relief is from the Latin verb relevare, to raise (lit.'to lift back'). To create a sculpture in relief is to give the impression that the sculpted material has been raised above the background plane. When a relief is carved into a flat surface of stone (relief sculpture) or wood (relief carving), the field is actually lowered, leaving the unsculpted areas seeming higher. The approach requires chiselling away of the background, which can be time-intensive. On the other hand, a relief saves forming the rear of a subject, and is less fragile and more securely fixed than a sculpture in the round, especially one of a standing figure where the ankles are a potential weak point, particularly in stone. In other materials such as metal, clay, plaster stucco, ceramics or papier-mâché the form can be simply added to or raised up from the background. Monumental bronze reliefs are made by casting.

There are different degrees of relief depending on the degree of projection of the sculpted form from the field, for which the Italian and French terms are still sometimes used in English. The full range includes high relief (Italian alto-rilievo, French haut-relief), where more than 50% of the depth is shown and there may be undercut areas, mid-relief (Italian mezzo-rilievo), low relief (Italian basso-rilievo, French: bas-relief), and shallow-relief (Italian rilievo schiacciato), where the plane is only very slightly lower than the sculpted elements. There is also sunk relief, which was mainly restricted to Ancient Egypt (see below). However, the distinction between high relief and low relief is the clearest and most important, and these two are generally the only terms used to discuss most work.

View the full Wikipedia page for Relief
↑ Return to Menu

Plane (geometry) in the context of Three dimensions

In geometry, a three-dimensional space is a mathematical space in which three values (termed coordinates) are required to determine the position of a point. Alternatively, it can be referred to as 3D space, 3-space or, rarely, tri-dimensional space. Most commonly, it means the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space. More general three-dimensional spaces are called 3-manifolds. The term may refer colloquially to a subset of space, a three-dimensional region (or 3D domain), a solid figure.

Technically, a tuple of n numbers can be understood as the Cartesian coordinates of a location in a n-dimensional Euclidean space. The set of these n-tuples is commonly denoted and can be identified to the pair formed by a n-dimensional Euclidean space and a Cartesian coordinate system.When n = 3, this space is called the three-dimensional Euclidean space (or simply "Euclidean space" when the context is clear). In classical physics, it serves as a model of the physical universe, in which all known matter exists. When relativity theory is considered, it can be considered a local subspace of space-time. While this space remains the most compelling and useful way to model the world as it is experienced, it is only one example of a 3-manifold. In this classical example, when the three values refer to measurements in different directions (coordinates), any three directions can be chosen, provided that these directions do not lie in the same plane. Furthermore, if these directions are pairwise perpendicular, the three values are often labeled by the terms width/breadth, height/depth, and length.

View the full Wikipedia page for Three dimensions
↑ Return to Menu

Plane (geometry) in the context of Geometry

Geometry is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician who works in the field of geometry is called a geometer. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts.

Originally developed to model the physical world, geometry has applications in almost all sciences, and also in art, architecture, and other activities that are related to graphics. Geometry also has applications in areas of mathematics that are apparently unrelated. For example, methods of algebraic geometry are fundamental in Wiles's proof of Fermat's Last Theorem, a problem that was stated in terms of elementary arithmetic, and remained unsolved for several centuries.

View the full Wikipedia page for Geometry
↑ Return to Menu

Plane (geometry) in the context of Equator

The equator is the circle of latitude that divides Earth into the Northern and Southern hemispheres. It is an imaginary line located at 0 degrees latitude, about 40,075 km (24,901 mi) in circumference, halfway between the North and South poles. The term can also be used for any other celestial body that is roughly spherical.

In spatial (3D) geometry, as applied in astronomy, the equator of a rotating spheroid (such as a planet) is the parallel (circle of latitude) at which latitude is defined to be 0°. It is an imaginary line on the spheroid, equidistant from its poles, dividing it into northern and southern hemispheres. In other words, it is the intersection of the spheroid with the plane perpendicular to its axis of rotation and midway between its geographical poles.

View the full Wikipedia page for Equator
↑ Return to Menu

Plane (geometry) in the context of Parabola

In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves.

One description of a parabola involves a point (the focus) and a line (the directrix). The focus does not lie on the directrix. The parabola is the locus of points in that plane that are equidistant from the directrix and the focus. Another description of a parabola is as a conic section, created from the intersection of a right circular conical surface and a plane parallel to another plane that is tangential to the conical surface.

View the full Wikipedia page for Parabola
↑ Return to Menu

Plane (geometry) in the context of Hyperboloid of revolution

In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by deforming it by means of directional scalings, or more generally, of an affine transformation.

A hyperboloid is a quadric surface, that is, a surface defined as the zero set of a polynomial of degree two in three variables. Among quadric surfaces, a hyperboloid is characterized by not being a cone or a cylinder, having a center of symmetry, and intersecting many planes into hyperbolas. A hyperboloid has three pairwise perpendicular axes of symmetry, and three pairwise perpendicular planes of symmetry.

View the full Wikipedia page for Hyperboloid of revolution
↑ Return to Menu

Plane (geometry) in the context of Hyperbola

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. (The other conic sections are the parabola and the ellipse. A circle is a special case of an ellipse.) If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.

Besides being a conic section, a hyperbola can arise as the locus of points whose difference of distances to two fixed foci is constant, as a curve for each point of which the rays to two fixed foci are reflections across the tangent line at that point, or as the solution of certain bivariate quadratic equations such as the reciprocal relationship In practical applications, a hyperbola can arise as the path followed by the shadow of the tip of a sundial's gnomon, the shape of an open orbit such as that of a celestial object exceeding the escape velocity of the nearest gravitational body, or the scattering trajectory of a subatomic particle, among others.

View the full Wikipedia page for Hyperbola
↑ Return to Menu

Plane (geometry) in the context of Cross-sectional area

In geometry and science, a cross section is the non-empty intersection of a solid body in three-dimensional space with a plane, or the analog in higher-dimensional spaces. Cutting an object into slices creates many parallel cross-sections. The boundary of a cross-section in three-dimensional space that is parallel to two of the axes, that is, parallel to the plane determined by these axes, is sometimes referred to as a contour line; for example, if a plane cuts through mountains of a raised-relief map parallel to the ground, the result is a contour line in two-dimensional space showing points on the surface of the mountains of equal elevation.

In technical drawing a cross-section, being a projection of an object onto a plane that intersects it, is a common tool used to depict the internal arrangement of a 3-dimensional object in two dimensions. It is traditionally crosshatched with the style of crosshatching often indicating the types of materials being used.

View the full Wikipedia page for Cross-sectional area
↑ Return to Menu

Plane (geometry) in the context of Disk (mathematics)

In geometry, a disk (also spelled disc) is the region in a plane bounded by a circle. A disk is said to be closed if it contains the circle that constitutes its boundary, and open if it does not.

For a radius , an open disk is usually denoted as , and a closed disk is . However in the field of topology the closed disk is usually denoted as , while the open disk is .

View the full Wikipedia page for Disk (mathematics)
↑ Return to Menu

Plane (geometry) in the context of Hyperplane

In geometry, a hyperplane is a generalization of a two-dimensional plane in three-dimensional space to mathematical spaces of arbitrary dimension. Like a plane in space, a hyperplane is a flat hypersurface, a subspace whose dimension is one less than that of the ambient space. Two lower-dimensional examples of hyperplanes are one-dimensional lines in a plane and zero-dimensional points on a line.

Most commonly, the ambient space is n-dimensional Euclidean space, in which case the hyperplanes are the (n − 1)-dimensional "flats", each of which separates the space into two half spaces. A reflection across a hyperplane is a kind of motion (geometric transformation preserving distance between points), and the group of all motions is generated by the reflections. A convex polytope is the intersection of half-spaces.

View the full Wikipedia page for Hyperplane
↑ Return to Menu

Plane (geometry) in the context of Hammer

A hammer is a tool, most often a hand tool, consisting of a weighted "head" fixed to a long handle that is swung to deliver an impact to a small area of an object. This can be, for example, to drive nails into wood, to shape metal (as with a forge), or to crush rock. Hammers are used for a wide range of driving, shaping, breaking and non-destructive striking applications. Traditional disciplines include carpentry, blacksmithing, warfare, and percussive musicianship (as with a gong).

Hammering is use of a hammer in its strike capacity, as opposed to prying with a secondary claw or grappling with a secondary hook. Carpentry and blacksmithing hammers are generally wielded from a stationary stance against a stationary target as gripped and propelled with one arm, in a lengthy downward planar arc—downward to add kinetic energy to the impact—pivoting mainly around the shoulder and elbow, with a small but brisk wrist rotation shortly before impact; for extreme impact, concurrent motions of the torso and knee can lower the shoulder joint during the swing to further increase the length of the swing arc (but this is tiring). War hammers are often wielded in non-vertical planes of motion, with a far greater share of energy input provided from the legs and hips, which can also include a lunging motion, especially against moving targets. Small mallets can be swung from the wrists in a smaller motion permitting a much higher cadence of repeated strikes. Use of hammers and heavy mallets for demolition must adapt the hammer stroke to the location and orientation of the target, which can necessitate a clubbing or golfing motion with a two-handed grip.

View the full Wikipedia page for Hammer
↑ Return to Menu

Plane (geometry) in the context of Triangular

A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called vertices, are zero-dimensional points while the sides connecting them, also called edges, are one-dimensional line segments. A triangle has three internal angles, each one bounded by a pair of adjacent edges; the sum of angles of a triangle always equals a straight angle (180 degrees or π radians). The triangle is a plane figure and its interior is a planar region. Sometimes an arbitrary edge is chosen to be the base, in which case the opposite vertex is called the apex; the shortest segment between the base and apex is the height. The area of a triangle equals one-half the product of height and base length.

In Euclidean geometry, any two points determine a unique line segment situated within a unique straight line, and any three points that do not all lie on the same straight line determine a unique triangle situated within a unique flat plane. More generally, four points in three-dimensional Euclidean space determine a solid figure called tetrahedron.

View the full Wikipedia page for Triangular
↑ Return to Menu

Plane (geometry) in the context of Shape

A shape is a graphical representation of an object's form or its external boundary, outline, or external surface. It is distinct from other object properties, such as color, texture, or material type.In geometry, shape excludes information about the object's position, size, orientation and chirality.A figure is a representation including both shape and size (as in, e.g., figure of the Earth).

A plane shape or plane figure is constrained to lie on a plane, in contrast to solid 3D shapes.A two-dimensional shape or two-dimensional figure (also: 2D shape or 2D figure) may lie on a more general curved surface (a two-dimensional space).

View the full Wikipedia page for Shape
↑ Return to Menu

Plane (geometry) in the context of Complex plane

In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal x-axis, called the real axis, is formed by the real numbers, and the vertical y-axis, called the imaginary axis, is formed by the imaginary numbers.

The complex plane allows for a geometric interpretation of complex numbers. Under addition, they add like vectors. The multiplication of two complex numbers can be expressed more easily in polar coordinates: the magnitude or modulus of the product is the product of the two absolute values, or moduli, and the angle or argument of the product is the sum of the two angles, or arguments. In particular, multiplication by a complex number of modulus 1 acts as a rotation.

View the full Wikipedia page for Complex plane
↑ Return to Menu

Plane (geometry) in the context of Cartesian coordinate system

In geometry, a Cartesian coordinate system (UK: /kɑːrˈtzjən/, US: /kɑːrˈtʒən/) in a plane is a coordinate system that specifies each point uniquely by a pair of real numbers called coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, called coordinate lines, coordinate axes or just axes (plural of axis) of the system. The point where the axes meet is called the origin and has (0, 0) as coordinates. The axes directions represent an orthogonal basis. The combination of origin and basis forms a coordinate frame called the Cartesian frame.

Similarly, the position of any point in three-dimensional space can be specified by three Cartesian coordinates, which are the signed distances from the point to three mutually perpendicular planes. More generally, n Cartesian coordinates specify the point in an n-dimensional Euclidean space for any dimension n. These coordinates are the signed distances from the point to n mutually perpendicular fixed hyperplanes.

View the full Wikipedia page for Cartesian coordinate system
↑ Return to Menu