3-manifold in the context of Plane (geometry)


3-manifold in the context of Plane (geometry)

3-manifold Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about 3-manifold in the context of "Plane (geometry)"


⭐ Core Definition: 3-manifold

In mathematics, a 3-manifold is a topological space that locally looks like a three-dimensional Euclidean space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane (a tangent plane) to a small and close enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below.

↓ Menu
HINT:

In this Dossier

3-manifold in the context of Three dimensions

In geometry, a three-dimensional space is a mathematical space in which three values (termed coordinates) are required to determine the position of a point. Alternatively, it can be referred to as 3D space, 3-space or, rarely, tri-dimensional space. Most commonly, it means the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space. More general three-dimensional spaces are called 3-manifolds. The term may refer colloquially to a subset of space, a three-dimensional region (or 3D domain), a solid figure.

Technically, a tuple of n numbers can be understood as the Cartesian coordinates of a location in a n-dimensional Euclidean space. The set of these n-tuples is commonly denoted and can be identified to the pair formed by a n-dimensional Euclidean space and a Cartesian coordinate system.When n = 3, this space is called the three-dimensional Euclidean space (or simply "Euclidean space" when the context is clear). In classical physics, it serves as a model of the physical universe, in which all known matter exists. When relativity theory is considered, it can be considered a local subspace of space-time. While this space remains the most compelling and useful way to model the world as it is experienced, it is only one example of a 3-manifold. In this classical example, when the three values refer to measurements in different directions (coordinates), any three directions can be chosen, provided that these directions do not lie in the same plane. Furthermore, if these directions are pairwise perpendicular, the three values are often labeled by the terms width/breadth, height/depth, and length.

View the full Wikipedia page for Three dimensions
↑ Return to Menu

3-manifold in the context of Hyperbolic 3-manifold

In mathematics, more precisely in topology and differential geometry, a hyperbolic 3-manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to −1. It is generally required that this metric be also complete: in this case the manifold can be realised as a quotient of the 3-dimensional hyperbolic space by a discrete group of isometries (a Kleinian group).

Hyperbolic 3-manifolds of finite volume have a particular importance in 3-dimensional topology as follows from Thurston's geometrisation conjecture proved by Perelman. The study of Kleinian groups is also an important topic in geometric group theory.

View the full Wikipedia page for Hyperbolic 3-manifold
↑ Return to Menu

3-manifold in the context of Finite subdivision rule

In mathematics, a finite subdivision rule is a recursive way of dividing a polygon or other two-dimensional shape into smaller and smaller pieces. Subdivision rules in a sense are generalizations of regular geometric fractals. Instead of repeating exactly the same design over and over, they have slight variations in each stage, allowing a richer structure while maintaining the elegant style of fractals. Subdivision rules have been used in architecture, biology, and computer science, as well as in the study of hyperbolic manifolds. Substitution tilings are a well-studied type of subdivision rule.

View the full Wikipedia page for Finite subdivision rule
↑ Return to Menu

3-manifold in the context of Hypersphere

In mathematics, a hypersphere or 3-sphere is a 4-dimensional analogue of a sphere, and is the 3-dimensional n-sphere. In 4-dimensional Euclidean space, it is the set of points equidistant from a fixed central point. The interior of a 3-sphere is a 4-ball.

It is called a 3-sphere because topologically, the surface itself is 3-dimensional, even though it is curved into the 4th dimension. For example, when traveling on a 3-sphere, you can go north and south, east and west, or along a 3rd set of cardinal directions. This means that a 3-sphere is an example of a 3-manifold.

View the full Wikipedia page for Hypersphere
↑ Return to Menu

3-manifold in the context of Geometrisation conjecture

In mathematics, Thurston's geometrization conjecture (now a theorem) states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theorem for two-dimensional surfaces, which states that every simply connected Riemann surface can be given one of three geometries (Euclidean, spherical, or hyperbolic).

In three dimensions, it is not always possible to assign a single geometry to a whole topological space. Instead, the geometrization conjecture states that every closed 3-manifold can be decomposed in a canonical way into pieces that each have one of eight types of geometric structure. The conjecture was proposed by William Thurston (1982) as part of his 24 questions, and implies several other conjectures, such as the Poincaré conjecture and Thurston's elliptization conjecture.

View the full Wikipedia page for Geometrisation conjecture
↑ Return to Menu

3-manifold in the context of Orbifold

In the mathematical disciplines of topology and geometry, an orbifold (for "orbit-manifold") is a generalization of a manifold. Roughly speaking, an orbifold is a topological space that is locally a finite group quotient of a Euclidean space.

Definitions of orbifold have been given several times: by Ichirō Satake in the context of automorphic forms in the 1950s under the name V-manifold; by William Thurston in the context of the geometry of 3-manifolds in the 1970s when he coined the name orbifold, after a vote by his students; and by André Haefliger in the 1980s in the context of Mikhail Gromov's programme on CAT(k) spaces under the name orbihedron.

View the full Wikipedia page for Orbifold
↑ Return to Menu