Pion in the context of Annihilation


Pion in the context of Annihilation

Pion Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Pion in the context of "Annihilation"


⭐ Core Definition: Pion

In particle physics, a pion (/ˈp.ɒn/, PIE-on) or pi meson, denoted with the Greek letter pi (π), is any of three subatomic particles: π
, π
, and π
. Each pion consists of a quark and an antiquark and is therefore a meson. Pions are the lightest mesons and, more generally, the lightest hadrons. They are unstable, with the charged pions π
and π
decaying after a mean lifetime of 26.033 nanoseconds (2.6033×10 seconds), and the neutral pion π
decaying after a much shorter lifetime of 85 attoseconds (8.5×10 seconds). Charged pions most often decay into muons and muon neutrinos, while neutral pions generally decay into gamma rays.

The exchange of virtual pions, along with vector, rho and omega mesons, provides an explanation for the residual strong force between nucleons. Pions are not produced in radioactive decay, but commonly are in high-energy collisions between hadrons. Pions also result from some matter–antimatter annihilation events. All types of pions are also produced in natural processes when high-energy cosmic-ray protons and other hadronic cosmic-ray components interact with matter in Earth's atmosphere. In 2013, the detection of characteristic gamma rays originating from the decay of neutral pions in two supernova remnants has shown that pions are produced copiously after supernovas, most probably in conjunction with production of high-energy protons that are detected on Earth as cosmic rays.

↓ Menu
HINT:

In this Dossier

Pion in the context of Strong interaction

In nuclear physics and particle physics, the strong interaction, also called the strong force or strong nuclear force, is one of the four known fundamental interactions. It confines quarks into protons, neutrons, and other hadron particles, and also binds neutrons and protons to create atomic nuclei, where it is called the nuclear force.

Most of the mass of a proton or neutron is the result of the strong interaction energy; the individual quarks provide only about 1% of the mass of a proton. At the range of 10 m (1 femtometer, slightly more than the radius of a nucleon), the strong force is approximately 100 times as strong as electromagnetism, 10 times as strong as the weak interaction, and 10 times as strong as gravitation.

View the full Wikipedia page for Strong interaction
↑ Return to Menu

Pion in the context of Gamma-ray astronomy

Gamma-ray astronomy is a subfield of astronomy where scientists observe and study celestial objects and phenomena in outer space which emit cosmic electromagnetic radiation in the form of gamma rays, i.e. photons with the highest energies (above 100 keV) at the very shortest wavelengths. X-ray astronomy uses the next lower energy range, X-ray radiation, with energy below 100 keV.

In most cases, gamma rays from solar flares and Earth's atmosphere fall in the MeV range, but it's now known that solar flares can also produce gamma rays in the GeV range, contrary to previous beliefs. Much of the detected gamma radiation stems from collisions between hydrogen gas and cosmic rays within our galaxy. These gamma rays, originating from diverse mechanisms such as electron-positron annihilation, the inverse Compton effect and in some cases gamma decay, occur in regions of extreme temperature, density, and magnetic fields, reflecting violent astrophysical processes like the decay of neutral pions. They provide insights into extreme events like supernovae, hypernovae, and the behavior of matter in environments such as pulsars and blazars. A huge number of gamma ray emitting high-energy systems like black holes, stellar coronas, neutron stars, white dwarf stars, remnants of supernova, clusters of galaxies, including the Crab Nebula and the Vela Pulsar (the most powerful source so far), have been identified, alongside an overall diffuse gamma-ray background along the plane of the Milky Way galaxy. Cosmic radiation with the highest energy triggers electron-photon cascades in the atmosphere, while lower-energy gamma rays are only detectable above it. Gamma-ray bursts, like GRB 190114C, are transient phenomena challenging our understanding of high-energy astrophysical processes, ranging from microseconds to several hundred seconds.

View the full Wikipedia page for Gamma-ray astronomy
↑ Return to Menu

Pion in the context of Quantum chromodynamics

In theoretical physics, quantum chromodynamics (QCD) is the study of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type of quantum field theory called a non-abelian gauge theory, with symmetry group SU(3). The QCD analog of electric charge is a property called color. Gluons are the force carriers of the theory, just as photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of particle physics. A large body of experimental evidence for QCD has been gathered over the years.

View the full Wikipedia page for Quantum chromodynamics
↑ Return to Menu

Pion in the context of Air shower (physics)

Air showers are extensive cascades of subatomic particles and ionized nuclei, produced in the atmosphere when a primary cosmic ray enters the atmosphere. Particles of cosmic radiation can be protons, nuclei, electrons, photons, or (rarely) positrons. Upon entering the atmosphere, they interact with molecules and initiate a particle cascade that lasts for several generations, until the energy of the primary particle is fully converted. If the primary particle is a hadron, mostly light mesons like pions and kaons are produced in the first interactions, which then fuel a hadronic shower component that produces shower particles mostly through pion decay. Primary photons and electrons, on the other hand, produce mainly electromagnetic showers. Depending on the energy of the primary particle, the detectable size of the shower can reach several kilometers in diameter.

The air shower phenomenon was unwittingly discovered by Bruno Rossi in 1933 in a laboratory experiment. In 1937 Pierre Auger, unaware of Rossi's earlier report, detected the same phenomenon and investigated it in some detail. He concluded that cosmic-ray particles are of extremely high energies and interact with nuclei high up in the atmosphere, initiating a cascade of secondary interactions that produce extensive showers of subatomic particles.

View the full Wikipedia page for Air shower (physics)
↑ Return to Menu

Pion in the context of Scalar field theory

In theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation.

The only fundamental scalar quantum field that has been observed in nature is the Higgs field. However, scalar quantum fields feature in the effective field theory descriptions of many physical phenomena. An example is the pion, which is actually a pseudoscalar.

View the full Wikipedia page for Scalar field theory
↑ Return to Menu

Pion in the context of Proton decay

Proton decay is the hypothetical decay of a proton into lighter subatomic particles, such as a neutral pion and a positron. The proton decay hypothesis was first formulated by Andrei Sakharov in 1967. Despite significant experimental effort, proton decay has never been observed. If it does decay via a positron, the proton's half-life is constrained to be at least 1.67×10 years.

According to the Standard Model, the proton, a type of baryon, is stable because baryon number (quark number) is conserved (under normal circumstances; see Chiral anomaly for an exception). Therefore, protons will not decay into other particles on their own, because they are the lightest (and therefore least energetic) baryon. Positron emission and electron capture—forms of radioactive decay in which a proton becomes a neutron—are not proton decay, since the proton interacts with other particles within the atom.

View the full Wikipedia page for Proton decay
↑ Return to Menu

Pion in the context of Hadron

In particle physics, a hadron is a composite subatomic particle made of two or more quarks held together by the strong nuclear force. Pronounced /ˈhædrɒn/ , the name is derived from Ancient Greek ἁδρός (hadrós) 'stout, thick'. They are analogous to molecules, which are held together by the electric force. Most of the mass of ordinary matter comes from two hadrons: the proton and the neutron, while most of the mass of the protons and neutrons is in turn due to the binding energy of their constituent quarks, due to the strong force.

Hadrons are categorized into two broad families: baryons, made of an odd number of quarks (usually three), and mesons, made of an even number of quarks (usually two: one quark and one antiquark). Protons and neutrons (which make the majority of the mass of an atom) are examples of baryons; pions are an example of a meson. A tetraquark state (an exotic meson), named the Z(4430), was discovered in 2007 by the Belle Collaboration and confirmed as a resonance in 2014 by the LHCb collaboration. Two pentaquark states (exotic baryons), named P
c
(4380)
and P
c
(4450)
, were discovered in 2015 by the LHCb collaboration. There are several other "Exotic" hadron candidates and other colour-singlet quark combinations that may also exist.

View the full Wikipedia page for Hadron
↑ Return to Menu

Pion in the context of Hagedorn temperature

The Hagedorn temperature, TH, is the temperature in theoretical physics where hadronic matter (i.e. ordinary matter) is no longer stable, and must either "evaporate" or convert into quark matter; as such, it can be thought of as the "boiling point" of hadronic matter. It was discovered by Rolf Hagedorn. The Hagedorn temperature exists because the amount of energy available is high enough that matter particle (quarkantiquark) pairs can be spontaneously pulled from vacuum. Thus, naively considered, a system at Hagedorn temperature can accommodate as much energy as one can put in, because the formed quarks provide new degrees of freedom. However, if this phase is viewed as quarks instead, it becomes apparent that the matter has transformed into quark matter, which can be further heated.

The Hagedorn temperature, TH, is about 150 MeV/kB or about 1.7×10 K, little above the mass–energy of the lightest hadrons, the pion. Hagedorn was able not only to give a simple explanation for the thermodynamical aspect of high energy particle production, but also worked out a formula for the hadronic mass spectrum and predicted the limiting temperature for hot hadronic systems.

View the full Wikipedia page for Hagedorn temperature
↑ Return to Menu

Pion in the context of Exotic atom

An exotic atom is an otherwise normal atom in which one or more subatomic particles have been replaced by other particles. For example, electrons may be replaced by other negatively charged particles such as muons (muonic atoms) or pions (pionic atoms). Because these substitute particles are usually unstable, exotic atoms typically have very short lifetimes and no exotic atom observed so far can persist under normal conditions.

View the full Wikipedia page for Exotic atom
↑ Return to Menu

Pion in the context of Pseudoscalar meson

In high-energy physics, a pseudoscalar meson is a meson with total spin 0 and odd parity (usually notated as J = 0 ).Pseudoscalar mesons are commonly seen in proton–proton scattering and proton–antiproton annihilation, and include the pion (π), kaon (K), eta (η), and eta prime (η′) particles, whose masses are known with great precision.

Among all of the mesons known to exist, in some sense, the pseudoscalars are the most well studied and understood.

View the full Wikipedia page for Pseudoscalar meson
↑ Return to Menu

Pion in the context of Rho meson

In particle physics, a rho meson is a short-lived hadronic particle that is an isospin triplet whose three states are denoted as ρ
, ρ
and ρ
. Along with pions and omega mesons, the rho meson carries the nuclear force within the atomic nucleus. After the octet consisting of the pions, kaons, and eta meson, the rho mesons are the lightest strongly interacting particle, with a mass of about 775 MeV for all three states.

The rho mesons have a very short lifetime and their decay width is about 145 MeV; because that is large compared with the mass, the resonance width measurably deviates from a Breit–Wigner form. The principal decay route of the rho mesons is to a pair of pions with a branching rate of 99.9% (however, all neutral pions is forbidden).

View the full Wikipedia page for Rho meson
↑ Return to Menu