Phototrophs in the context of "Photoheterotroph"

Play Trivia Questions online!

or

Skip to study material about Phototrophs in the context of "Photoheterotroph"





πŸ‘‰ Phototrophs in the context of Photoheterotroph

Photoheterotrophs (Gk: photo = light, hetero = (an)other, troph = nourishment) are heterotrophic phototrophsβ€”that is, they are organisms that use light for energy, but cannot use carbon dioxide as their sole carbon source. Consequently, they use organic compounds from the environment to satisfy their carbon requirements; these compounds include carbohydrates, fatty acids, and alcohols. Examples of photoheterotrophic organisms include purple non-sulfur bacteria, green non-sulfur bacteria, and heliobacteria. These microorganisms are ubiquitous in aquatic habitats, occupy unique niche-spaces, and contribute to global biogeochemical cycling. Recent research has also indicated that the oriental hornet and some aphids may be able to use light to supplement their energy supply. Some recent research has even found hints of photoheterotrophy in a few eukaryotes, though it's still being studied.

↓ Explore More Topics
In this Dossier

Phototrophs in the context of Chloroflexales

Chloroflexales is an order of bacteria in the class Chloroflexia. The clade is also known as filamentous anoxygenic phototrophic bacteria (FAP), as the order contains phototrophs that do not produce oxygen. These bacteria are facultative aerobic. They generally use chemotrophy when oxygen is present and switch to light-derived energy when otherwise. Most species are heterotrophs, but a few are capable of photoautotrophy.

The order can be divided into two suborders. Chloroflexineae ("Green FAP", "green non-sulfur bacteria") is the better-known one. This suborder uses chlorosomes, a specialized antenna complex, to pass light energy to the reaction center. Roseiflexineae ("Red FAP") on the other hand has no such ability. The named colors are not absolute, as growth conditions such as oxygen concentration will make a green FAP appear green, brown, or reddish-orange by inducing changes in pigment composition.

↑ Return to Menu