Photomultiplier tube in the context of Light scattering


Photomultiplier tube in the context of Light scattering

Photomultiplier tube Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Photomultiplier tube in the context of "Light scattering"


⭐ Core Definition: Photomultiplier tube

Photomultiplier tubes (photomultipliers or PMTs for short) are extremely sensitive detectors of light in the ultraviolet, visible, and near-infrared ranges of the electromagnetic spectrum. They are members of the class of vacuum tubes, more specifically vacuum phototubes. These detectors multiply the current produced by incident light by as much as 100 million times or 10 (i.e., 160 dB), in multiple dynode stages, enabling (for example) individual photons to be detected when the incident flux of light is low.

The combination of high gain, low noise, high frequency response or, equivalently, ultra-fast response, and large area of collection has maintained photomultipliers an essential place in low light level spectroscopy, confocal microscopy, Raman spectroscopy, fluorescence spectroscopy, nuclear and particle physics, astronomy, medical diagnostics including blood tests, medical imaging, motion picture film scanning (telecine), radar jamming, and high-end image scanners known as drum scanners. Elements of photomultiplier technology, when integrated differently, are the basis of night vision devices. Research that analyzes light scattering, such as the study of polymers in solution, often uses a laser and a PMT to collect the scattered light data.

↓ Menu
HINT:

In this Dossier

Photomultiplier tube in the context of Photodetector

Photodetectors, also called photosensors, are devices that detect light or other forms of electromagnetic radiation and convert it into an electrical signal. They are essential in a wide range of applications, from digital imaging and optical communication to scientific research and industrial automation. Photodetectors can be classified by their mechanism of detection, such as the photoelectric effect, photochemical reactions, or thermal effects, or by performance metrics like spectral response. Common types include photodiodes, phototransistors, and photomultiplier tubes, each suited to specific uses. Solar cells, which convert light into electricity, are also a type of photodetector. This article explores the principles behind photodetectors, their various types, applications, and recent advancements in the field.

View the full Wikipedia page for Photodetector
↑ Return to Menu

Photomultiplier tube in the context of Image scanner

An image scanner (often abbreviated to just scanner) is a device that optically scans images, printed text, handwriting, or an object and converts it to a digital image. The most common type of scanner used in the home and the office is the flatbed scanner, where the document is placed on a glass bed. A sheetfed scanner, which moves the page across an image sensor using a series of rollers, may be used to scan one page of a document at a time or multiple pages, as in an automatic document feeder. A handheld scanner is a portable version of an image scanner that can be used on any flat surface. Scans are typically downloaded to the computer that the scanner is connected to, although some scanners are able to store scans on standalone flash media (e.g., memory cards and USB drives).

Modern scanners typically use a charge-coupled device (CCD) or a contact image sensor (CIS) as the image sensor, whereas drum scanners, developed earlier and still used for the highest possible image quality, use a photomultiplier tube (PMT) as the image sensor. Document cameras, which use commodity or specialized high-resolution cameras, photograph documents all at once.

View the full Wikipedia page for Image scanner
↑ Return to Menu

Photomultiplier tube in the context of Phototube

A phototube or photoelectric cell is a type of gas-filled or vacuum tube that is sensitive to light. Such a tube is more correctly called a 'photoemissive cell' to distinguish it from photovoltaic or photoconductive cells. Phototubes were previously more widely used but are now replaced in many applications by solid state photodetectors. The photomultiplier tube is one of the most sensitive light detectors, and is still widely used in physics research.

View the full Wikipedia page for Phototube
↑ Return to Menu

Photomultiplier tube in the context of UBV photometric system

The UBV photometric system (from Ultraviolet, Blue, Visual), also called the Johnson system (or Johnson-Morgan system), is a photometric system usually employed for classifying stars according to their colors. It was the first standardized photometric system. The apparent magnitudes of stars in the system are often used to determine the color indices B−V and U−B, the difference between the B and V magnitudes and the U and B magnitudes respectively. The system is defined using a set of color optical filters in combination with an RMA 1P21 photomultiplier tube.

The choice of colors on the blue end of the spectrum was assisted by the bias that photographic film has for those colors. It was introduced in the 1950s by American astronomers Harold Lester Johnson and William Wilson Morgan. A 13 in (330 mm) telescope and the 82 in (2,100 mm) telescope at McDonald Observatory were used to define the system. The filters that Johnson and Morgan used were Corning 9 863 for U and 3 384 for V. The B filter used a combination of Corning 5 030 and Schott GG 13.

View the full Wikipedia page for UBV photometric system
↑ Return to Menu

Photomultiplier tube in the context of IceCube Neutrino Observatory

The IceCube Neutrino Observatory (or simply IceCube) is a neutrino observatory developed by the University of Wisconsin–Madison and constructed at the Amundsen–Scott South Pole Station in Antarctica. The project is a recognized CERN experiment (RE10). Its thousands of sensors are located under the Antarctic ice, distributed over a cubic kilometer.

Similar to its predecessor, the Antarctic Muon And Neutrino Detector Array (AMANDA), IceCube consists of spherical optical sensors called Digital Optical Modules (DOMs), each with a photomultiplier tube (PMT) and a single-board data acquisition computer which sends digital data to the counting house on the surface above the array. IceCube was completed on 18 December 2010.

View the full Wikipedia page for IceCube Neutrino Observatory
↑ Return to Menu