Phosphorylation in the context of "Phosphatase"

Play Trivia Questions online!

or

Skip to study material about Phosphorylation in the context of "Phosphatase"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Phosphorylation in the context of Post-translational modification

In molecular biology, post-translational modification (PTM) is the covalent process of changing proteins following protein biosynthesis. PTMs may involve enzymes or occur spontaneously. Proteins are created by ribosomes, which translate mRNA into polypeptide chains, which may then change to form the mature protein product. PTMs are important components in cell signalling, as for example when prohormones are converted to hormones.

Post-translational modifications can occur on the amino acid side chains or at the protein's C- or N- termini. They can expand the chemical set of the 22 amino acids by changing an existing functional group or adding a new one such as phosphate. Phosphorylation is highly effective for controlling the enzyme activity and is the most common change after translation. Many eukaryotic and prokaryotic proteins also have carbohydrate molecules attached to them in a process called glycosylation, which can promote protein folding and improve stability as well as serving regulatory functions. Attachment of lipid molecules, known as lipidation, often targets a protein or part of a protein attached to the cell membrane.

↑ Return to Menu

Phosphorylation in the context of Neurofibrillary tangles

Neurofibrillary tangles (NFTs) are intracellular aggregates of hyperphosphorylated tau protein that are most commonly known as a primary biomarker of Alzheimer's disease. NFTs also are present in numerous other diseases known collectively as tauopathies. Little is known about their exact relationship to the different pathologies, but it is typically recognized that tauopathy is an important factor in the pathogenesis of several neurodegenerative diseases.

NFTs consist primarily of a misfolded, hyperphosphorylated microtubule-associated protein known as tau, which abnormally polymerizes into insoluble filaments within cells. Under the electron microscope, these polymers of tau are seen to take two basic forms: paired helical filaments (PHFs) and straight filaments. These basic types of tau filaments can vary structurally, especially in different tauopathies. The filaments bundle together to form the neurofibrillary tangles that are evident under the light microscope. Classical NFTs are located within the neuronal cell body, although it is now recognized that abnormal, filamentous tau occurs also in neuronal dendrites and axons (referred to as neuropil threads) and the dystrophic (abnormal) neurites that surround neuritic Abeta plaques. Mature NFTs in cell bodies can have a torch-like or globose appearance, depending on the type of neuron involved. When tangle-containing neurons die, the tangles can remain in the neuropil as extracellular "ghost tangles".

↑ Return to Menu

Phosphorylation in the context of Ion channel

Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of ions across the cell membrane, controlling the flow of ions across secretory and epithelial cells, and regulating cell volume. Ion channels are present in the membranes of all cells. Ion channels are one of the two classes of ionophoric proteins, the other being ion transporters.

The study of ion channels often involves biophysics, electrophysiology, and pharmacology, while using techniques including voltage clamp, patch clamp, immunohistochemistry, X-ray crystallography, fluoroscopy, and RT-PCR. Their classification as molecules is referred to as channelomics.

↑ Return to Menu

Phosphorylation in the context of Pentose

In chemistry, a pentose is a monosaccharide (simple sugar) with five carbon atoms. The chemical formula of many pentoses is C
5
H
10
O
5
, and their molecular weight is 150.13 g/mol.

Pentoses are very important in biochemistry. Ribose is a constituent of RNA, and the related molecule, deoxyribose, is a constituent of DNA. Phosphorylated pentoses are important products of the pentose phosphate pathway, most importantly ribose 5-phosphate (R5P), which is used in the synthesis of nucleotides and nucleic acids.

↑ Return to Menu

Phosphorylation in the context of Guanosine

Guanosine (symbol G or Guo) is a purine nucleoside comprising guanine attached to a ribose (ribofuranose) ring via a β-N9-glycosidic bond. Guanosine can be phosphorylated to become guanosine monophosphate (GMP), cyclic guanosine monophosphate (cGMP), guanosine diphosphate (GDP), and guanosine triphosphate (GTP). These forms play important roles in various biochemical processes such as synthesis of nucleic acids and proteins, photosynthesis, muscle contraction, and intracellular signal transduction (cGMP). When guanine is attached by its N9 nitrogen to the C1 carbon of a deoxyribose ring it is known as deoxyguanosine.

↑ Return to Menu

Phosphorylation in the context of L-glucose

l-Glucose is an organic compound with formula C6H12O6 or O=CH[CH(OH)]5H, specifically one of the aldohexose monosaccharides. As the l-isomer of glucose, it is the enantiomer of the more common d-glucose.

l-Glucose does not occur naturally in living organisms, but can be synthesized in the laboratory. l-Glucose is indistinguishable in taste from d-glucose, but cannot be used by living organisms as a source of energy because it cannot be phosphorylated by hexokinase, the first enzyme in the glycolysis pathway. One of the known exceptions is in Trinickia caryophylli, a plant pathogenic bacterium, which contains the enzyme d-threo-aldose 1-dehydrogenase which is capable of oxidizing l-glucose.

↑ Return to Menu

Phosphorylation in the context of Photophosphorylation

In the process of photosynthesis, the phosphorylation of ADP to form ATP using the energy of sunlight is called photophosphorylation. Cyclic photophosphorylation occurs in both aerobic and anaerobic conditions, driven by the main source of energy available to living organisms, which is sunlight. All organisms produce ATP, which is the universal energy currency of life. In photophosphorylation, light energy is used to pump protons across a biological membrane, mediated by flow of electrons through an electron transport chain. This stores energy in a proton gradient. As the protons flow back through an enzyme called ATP synthase, ATP is generated from ADP and inorganic phosphate. ATP is essential in the Calvin cycle to assist in the synthesis of carbohydrates from carbon dioxide and NADPH.

The scientist Charles Barnes first used the word 'photosynthesis' in 1893. This word is taken from two Greek words, photos, which means light, and synthesis, which in chemistry means making a substance by combining simpler substances. So, in the presence of light, synthesis of food is called 'photosynthesis'.

↑ Return to Menu

Phosphorylation in the context of Conformational change

In biochemistry, a conformational change is a change in the shape of a macromolecule, often induced by environmental factors.

A macromolecule is usually flexible and dynamic. It can change its shape in response to changes in its environment or other factors; each possible shape is called a conformation, and a transition between them is called a conformational change. Factors that may induce such changes include temperature, pH, voltage, light in chromophores, ion concentration, phosphorylation, or the binding of a ligand.

↑ Return to Menu