Philosophiæ Naturalis Principia Mathematica in the context of "Gravitational force"

Play Trivia Questions online!

or

Skip to study material about Philosophiæ Naturalis Principia Mathematica in the context of "Gravitational force"

Ad spacer

⭐ Core Definition: Philosophiæ Naturalis Principia Mathematica

Philosophiæ Naturalis Principia Mathematica (English: The Mathematical Principles of Natural Philosophy), often referred to as simply the Principia (/prɪnˈsɪpiə, prɪnˈkɪpiə/), is a book by Sir Isaac Newton that expounds Newton's laws of motion and his law of universal gravitation. The Principia is written in Latin and comprises three volumes, and was authorized, imprimatur, by Samuel Pepys, then-President of the Royal Society on 5 July 1686 and first published in 1687.

The Principia is considered one of the most important works in the history of science. The French mathematical physicist Alexis Clairaut assessed it in 1747: "The famous book of Mathematical Principles of Natural Philosophy marked the epoch of a great revolution in physics. The method followed by its illustrious author Sir Newton ... spread the light of mathematics on a science which up to then had remained in the darkness of conjectures and hypotheses." The French scientist Joseph-Louis Lagrange described it as "the greatest production of the human mind". French polymath Pierre-Simon Laplace stated that "The Principia is pre-eminent above any other production of human genius". Newton's work has also been called "the greatest scientific work in history", and "the supreme expression in human thought of the mind's ability to hold the universe fixed as an object of contemplation". Mathematician Eric Temple Bell wrote "It is no miracle then, when the power of Newton's mathematical genius is taken into account, the Principia is the unsurpassed masterpiece of both scientific coordination and the art of scientific prediction that it is."

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Philosophiæ Naturalis Principia Mathematica in the context of Age of Enlightenment

The Age of Enlightenment (also the Age of Reason) was a period in the history of Europe and Western civilization during which the Enlightenment, an intellectual and cultural movement, flourished, emerging in the late 17th century in Western Europe and reaching its peak in the 18th century, as its ideas spread more widely across Europe and into the European colonies, in the Americas and Oceania. Characterized by an emphasis on reason, empirical evidence, and scientific method, the Enlightenment promoted ideals of individual liberty, religious tolerance, progress, and natural rights. Its thinkers advocated for constitutional government, the separation of church and state, and the application of rational principles to social and political reform.

The Enlightenment emerged from and built upon the Scientific Revolution of the 16th and 17th centuries, which had established new methods of empirical inquiry through the work of figures such as Galileo Galilei, Johannes Kepler, Francis Bacon, Pierre Gassendi, Christiaan Huygens and Isaac Newton. Philosophical foundations were laid by thinkers including René Descartes, Thomas Hobbes, Baruch Spinoza, and John Locke, whose ideas about reason, natural rights, and empirical knowledge became central to Enlightenment thought. The dating of the period of the beginning of the Enlightenment can be attributed to the publication of Descartes' Discourse on the Method in 1637, with his method of systematically disbelieving everything unless there was a well-founded reason for accepting it, and featuring his dictum, Cogito, ergo sum ('I think, therefore I am'). Others cite the publication of Newton's Principia Mathematica (1687) as the culmination of the Scientific Revolution and the beginning of the Enlightenment. European historians traditionally dated its beginning with the death of Louis XIV of France in 1715 and its end with the outbreak of the French Revolution in 1789. Many historians now date the end of the Enlightenment as the start of the 19th century, with the latest proposed year being the death of Immanuel Kant in 1804.

↑ Return to Menu

Philosophiæ Naturalis Principia Mathematica in the context of Natural philosophy

Natural philosophy or philosophy of nature (from Latin philosophia naturalis) is the philosophical study of physics, that is, nature and the physical universe, while ignoring any supernatural influence. It was dominant before the development of modern science.

From the ancient world (at least since Aristotle) until the 19th century, natural philosophy was the common term for the study of physics (nature), a broad term that included botany, zoology, anthropology, and chemistry as well as what is now called physics. It was in the 19th century that the concept of science received its modern shape, with different subjects within science emerging, such as astronomy, biology, and physics. Institutions and communities devoted to science were founded. Isaac Newton's book Philosophiæ Naturalis Principia Mathematica (1687) (English: Mathematical Principles of Natural Philosophy) reflects the use of the term natural philosophy in the 17th century. Even in the 19th century, the work that helped define much of modern physics bore the title Treatise on Natural Philosophy (1867).

↑ Return to Menu

Philosophiæ Naturalis Principia Mathematica in the context of Spherical Earth

Spherical Earth or Earth's curvature refers to the approximation of the figure of the Earth as a sphere. The earliest documented mention of the concept dates from around the 5th century BC, when it appears in the writings of Greek philosophers. In the 3rd century BC, Hellenistic astronomy established the roughly spherical shape of Earth as a physical fact and calculated the Earth's circumference. This knowledge was gradually adopted throughout the Old World during Late Antiquity and the Middle Ages, displacing earlier beliefs in a flat Earth. A practical demonstration of Earth's sphericity was achieved by Ferdinand Magellan and Juan Sebastián Elcano's circumnavigation (1519–1522).

The realization that the figure of the Earth is more accurately described as an ellipsoid dates to the 17th century, as described by Isaac Newton in Principia. In the early 19th century, the flattening of the earth ellipsoid was determined to be of the order of 1/300 (Delambre, Everest). The modern value as determined by the US DoD World Geodetic System since the 1960s is close to 1/298.25. The scientific study of the shape of the Earth is known as geodesy.

↑ Return to Menu

Philosophiæ Naturalis Principia Mathematica in the context of Isaac Newton

Sir Isaac Newton (/ˈnjtən/ ; 4 January [O.S. 25 December] 1643 – 31 March [O.S. 20 March] 1727) was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, author, and inventor. He was a key figure in the Scientific Revolution and the Enlightenment that followed. His book Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy), first published in 1687, achieved the first great unification in physics and established classical mechanics. Newton also made seminal contributions to optics, and shares credit with German mathematician Gottfried Wilhelm Leibniz for formulating infinitesimal calculus, though he developed calculus years before Leibniz. Newton contributed to and refined the scientific method, and his work is considered the most influential in bringing forth modern science.

In the Principia, Newton formulated the laws of motion and universal gravitation that formed the dominant scientific viewpoint for centuries until it was superseded by the theory of relativity. He used his mathematical description of gravity to derive Kepler's laws of planetary motion, account for tides, the trajectories of comets, the precession of the equinoxes and other phenomena, eradicating doubt about the Solar System's heliocentricity. Newton solved the two-body problem and introduced the three-body problem. He demonstrated that the motion of objects on Earth and celestial bodies could be accounted for by the same principles. Newton's inference that the Earth is an oblate spheroid was later confirmed by the geodetic measurements of Alexis Clairaut, Charles Marie de La Condamine, and others, convincing most European scientists of the superiority of Newtonian mechanics over earlier systems. He was also the first to calculate the age of Earth by experiment, and described a precursor to the modern wind tunnel. Further, he was the first to provide a quantitative estimate of the solar mass.

↑ Return to Menu

Philosophiæ Naturalis Principia Mathematica in the context of Treatise

A treatise is a formal and systematic written discourse on some subjects concerned with investigating or exposing the main principles of the subject and its conclusions. A monograph is a treatise on a specialized topic.

↑ Return to Menu

Philosophiæ Naturalis Principia Mathematica in the context of Newtonian mechanics

Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows:

  1. A body remains at rest, or in motion at a constant speed in a straight line, unless it is acted upon by a force.
  2. At any instant of time, the net force on a body is equal to the body's acceleration multiplied by its mass or, equivalently, the rate at which the body's momentum is changing with time.
  3. If two bodies exert forces on each other, these forces have the same magnitude but opposite directions.

The three laws of motion were first stated by Isaac Newton in his Philosophiæ Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy), originally published in 1687. Newton used them to investigate and explain the motion of many physical objects and systems. In the time since Newton, new insights, especially around the concept of energy, built the field of classical mechanics on his foundations. In modern times, limitations to Newton's laws have been discovered; new theories were consequently developed, such as quantum mechanics and relativity to address the physics of objects in more extreme cases.

↑ Return to Menu

Philosophiæ Naturalis Principia Mathematica in the context of Newton's law of universal gravitation

Newton's law of universal gravitation describes gravity as a force by stating that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between their centers of mass. Separated objects attract and are attracted as if all their mass were concentrated at their centers. The publication of the law has become known as the "first great unification", as it marked the unification of the previously described phenomena of gravity on Earth with known astronomical behaviors.

This is a general physical law derived from empirical observations by what Isaac Newton called inductive reasoning. It is a part of classical mechanics and was formulated in Newton's work Philosophiæ Naturalis Principia Mathematica (Latin for 'Mathematical Principles of Natural Philosophy' (the Principia)), first published on 5 July 1687.

↑ Return to Menu

Philosophiæ Naturalis Principia Mathematica in the context of Inertia

Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes its velocity to change. It is one of the fundamental principles in classical physics, and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). It is one of the primary manifestations of mass, one of the core quantitative properties of physical systems. Newton writes:

In his 1687 work Philosophiæ Naturalis Principia Mathematica, Newton defined inertia as a property:

↑ Return to Menu