Phenylpropanoid in the context of Polyphenols


Phenylpropanoid in the context of Polyphenols

Phenylpropanoid Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Phenylpropanoid in the context of "Polyphenols"


⭐ Core Definition: Phenylpropanoid

The phenylpropanoids are a diverse family of organic compounds that are biosynthesized by plants from the amino acids phenylalanine and tyrosine in the shikimic acid pathway. Their name is derived from the six-carbon, aromatic phenyl group and the three-carbon propene tail of coumaric acid, which is the central intermediate in phenylpropanoid biosynthesis. From 4-coumaroyl-CoA emanates the biosynthesis of myriad natural products including lignols (precursors to lignin and lignocellulose), flavonoids, isoflavonoids, coumarins, aurones, stilbenes, catechin, and phenylpropanoids. The coumaroyl component is produced from cinnamic acid.

Phenylpropanoids are found throughout the plant kingdom, where they serve as essential components of a number of structural polymers, provide protection from ultraviolet light, defend against herbivores and pathogens, and also mediate plant-pollinator interactions as floral pigments and scent compounds.

↓ Menu
HINT:

In this Dossier

Phenylpropanoid in the context of Anthocyanin

Anthocyanins (from Ancient Greek ἄνθος (ánthos) 'flower' and κυάνεος/κυανοῦς (kuáneos/kuanoûs) 'dark blue'), also called anthocyans, are water-soluble vacuolar pigments that, depending on their pH, may appear red, pink, purple, blue, or black. In 1835, the German pharmacist Ludwig Clamor Marquart named a chemical compound that gives flowers a blue color, Anthokyan, in his treatise "Die Farben der Blüthen" (English: The Colors of Flowers). Food plants rich in anthocyanins include the blueberry, raspberry, black rice, and black soybean, among many others that are red, pink, blue, purple, or black. Some of the colors of autumn leaves are derived from anthocyanins.

Anthocyanins belong to a parent class of molecules called flavonoids synthesized via the phenylpropanoid pathway. They can occur in all tissues of higher plants, including leaves, stems, roots, flowers, and fruits. Anthocyanins are derived from anthocyanidins by adding sugars. They are odorless and moderately astringent.

View the full Wikipedia page for Anthocyanin
↑ Return to Menu

Phenylpropanoid in the context of Phytochemistry

Phytochemistry is the study of phytochemicals, which are chemicals derived from plants. Phytochemists strive to describe the structures of the large number of secondary metabolites found in plants, the functions of these compounds in human and plant biology, and the biosynthesis of these compounds. Plants synthesize phytochemicals for many reasons, including to protect themselves against insect attacks and plant diseases. The compounds found in plants are of many kinds, but most can be grouped into four major biosynthetic classes: alkaloids, phenylpropanoids, polyketides, and terpenoids.

Phytochemistry can be considered a subfield of botany or chemistry. Activities can be led in botanical gardens or in the wild with the aid of ethnobotany. Phytochemical studies directed toward human (i.e. drug discovery) use may fall under the discipline of pharmacognosy, whereas phytochemical studies focused on the ecological functions and evolution of phytochemicals likely fall under the discipline of chemical ecology. Phytochemistry also has relevance to the field of plant physiology.

View the full Wikipedia page for Phytochemistry
↑ Return to Menu

Phenylpropanoid in the context of Polyphenol

Polyphenols (/ˌpɒliˈfnl, -nɒl/) are a large family of naturally occurring phenols. They are abundant in plants and structurally diverse. Polyphenols include phenolic acids, flavonoids, tannic acid, and ellagitannin, some of which have been used historically as dyes and for tanning garments.

View the full Wikipedia page for Polyphenol
↑ Return to Menu

Phenylpropanoid in the context of Cinnamaldehyde

Cinnamaldehyde is an organic compound with the formula C9H8O or C6H5CH=CHCHO. Occurring naturally as predominantly the trans (E) isomer, it gives cinnamon its flavor and odor. It is a phenylpropanoid that is naturally synthesized by the shikimate pathway. This pale yellow, viscous liquid occurs in the bark of cinnamon trees and other species of the genus Cinnamomum. It is an essential oil.

View the full Wikipedia page for Cinnamaldehyde
↑ Return to Menu