In genetics, the phenotype (from Ancient Greek φαίνω (phaínō) 'to appear, show' and τύπος (túpos) 'mark, type') is the set of observable characteristics or traits of an organism. The term covers all traits of an organism other than its genome, however transitory: the organism's morphology (physical form and structure), its developmental processes, its biochemical and physiological properties whether reversible or irreversible, and all its behavior, from a peacock's display to the phone number you half remember. An organism's phenotype results from two basic factors: the expression of an organism's unique profile of genes (its genotype) and the influence of environmental factors experienced by that same organism which influence the variable expression of said genes, and thereby shape the resulting profile of defining traits. Since the developmental process is a complex interplay of gene-environment, gene-gene interactions, there is a high degree of phenotypic variation in a given population that extends beyond mere genotypic variation.
A well-documented example of polymorphism is Labrador Retriever coloring; while the coat color depends on many genes, it is clearly seen in the environment as yellow, black, and brown. Richard Dawkins in 1978 and again in his 1982 book The Extended Phenotype suggested that one can regard bird nests and other built structures such as caddisfly larva cases and beaver dams as "extended phenotypes".